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Abstract—We present two novel approaches for automated
testing of models written in Alloy – a well-known declarative,
first-order language that is supported by a fully automatic SAT-
based analysis engine. The first approach introduces automated
test generation for Alloy and is embodied by three techniques
that create test suites in the traditional spirit of black-box, white-
box, and mutation-based testing. The second approach introduces
mutation testing for Alloy and defines how to create mutants
of Alloy models, compute mutation testing results, and check
for equivalent mutants using SAT. The two approaches build
on the theoretical foundation defined previously by our AUnit
framework, which introduced the idea of unit testing for Alloy
in the spirit of unit testing for imperative languages. While test
generation and mutation testing are heavily studied problems
with many solutions in the context of imperative languages, the
key novelty of our work is to introduce and address these
problems for the declarative programming paradigm, specifically
for the Alloy language. Experimental results using several Alloy
subjects, including those with real faults, demonstrate the efficacy
of our framework.

I. INTRODUCTION

Software designs play a vital role in developing dependable

systems. While a number of notations exist for modeling

designs [1], [3], [47], the tool support, e.g., integrated de-

velopment environments or test automation tools, for building

correct models remains inadequate, requiring developers to

employ validation methodologies that can be unfamiliar, ad

hoc, or not well-suited.

This paper focuses on testing models written in the well-

known software modeling language Alloy [1]. Alloy is a

declarative, first-order logic with transitive closure based on

relations. Alloy offers expressive operators that allow succinct

formulation of complex properties. However, the expressive-

ness and succinctness can make Alloy models look deceptively

simple. Formulating them correctly and reasoning their cor-

rectness can be quite challenging, especially for non-experts.

The Alloy analyzer [24], [51] is an automatic tool for scope-
bounded reasoning where the analysis results hold for the

given scope, i.e., bound on the universe of discourse. Alloy

users write commands, which take two forms: (1) simulation,

where the analyzer finds an instance, i.e., a valuation to the

relations in the model such that the formula evaluates to true;

and (2) checking, where the analyzer finds a counterexample,

i.e., a valuation such that the negation of the formula evaluates

to true. Technically, the underlying analysis for both forms is

the same – solving logical constraints. The analyzer translates

the Alloy model to a propositional formula with respect to the

scope and uses off-the-shelf SAT solvers to solve it, and trans-

lates SAT solutions to Alloy instances or counterexamples.

Models written in Alloy have two basic kinds of faults –

underconstraint, where the formula allows valuations that the

user wanted to rule out; and overconstraint, where the formula

rules out valuations that the user wanted to allow. Alloy users

employ two basic methods to validate their models. One, they

use simulation to enumerate and inspect valuations to detect

if some expected ones are missing or some invalid ones are

present. Two, they use checking to validate expected prop-

erties between different formulas, e.g., checking (bounded)

equivalence between two definitions that they expect are

equivalent. Moreover, for unsatisfiable formulas, the users can

also visually inspect unsat cores, which highlight parts of the

formulas that make the analysis problem unsatisfiable.

While the Alloy analyzer provides critical functionality for

checking Alloy models – which indeed is a key strength of the

Alloy tool-set – validating the correctness of an Alloy model

is conceptually very different from the widely used practice

of testing imperative programs, which is conceptually simple:

create some inputs (with respect to some coverage criterion

or otherwise), run the program against them, and check the

outputs. For example, there is no notion of unit tests or code

coverage built into the Alloy tool-set. This lack of support

for foundational elements in testing makes it particularly hard

for Alloy users, especially beginners, to gain confidence in

their models. Indeed, one question that we have continually

faced for over 10 years of teaching Alloy is “how do I

test my Alloy program?” Even for expert users, validating

correctness can be complicated. For example, when checking

a logical relation, say implication between formulas f and g,

i.e., f ⇒ g, it is standard practice to increase the scope and

re-run the analyzer to increase confidence that the implication

indeed holds; however, if f is overconstrained and simply

false, increasing the scope only leads to a false increase in

confidence. Similarly, when simulating f ∧ g, and finding a

solution, the user may inadvertently fail to notice that g is

true but only vacuously.

Our previous work [50] introduced basic definitions for unit

tests, test execution, and model coverage for Alloy to lay the

foundation of testing Alloy models in the traditional spirit of

testing. A unit test t for Alloy is a pair 〈v, c〉 where v is a

valuation and c is a command. Test t passes if v is a valuation

allowed by the Alloy analyzer on executing the command

c, and fails otherwise; thus, test execution is a constraint
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checking (and not solving) problem. Conceptually, a test case

is a valuation with the label valid or invalid; thus, the Alloy

users can create tests to directly check for underconstraint

(when a given invalid valuation is allowed by the formula) and

overconstraint (when a given valid valuation is not allowed by

the formula). Model coverage follows the traditional spirit

of code coverage and defines test requirements based on the

different elements of the Alloy model. For example, for an

Alloy expression e, the test requirements include e evaluating

to the empty set, to a singleton set, and a non-empty non-

singleton set for different valuations. As another example,

for a universally quantified formula u, the test requirements

include the case when u is vacuously true, i.e., the domain

(for quantification) is the empty set, and cases when u is non-

vacuously true (and separately false), e.g., when the domain

has exactly 1 element, and the domain has > 1 element. Thus,

the coverage requirements require the tests to exercise various

different values Alloy expressions and formulas may take as

well as the different ways those values may arise.

This paper introduces two new approaches for automated

testing of Alloy models. Our first approach provides automated

test generation and is embodied by three techniques that

create test suites following the spirit of traditional black-box,

white-box, and mutation-based testing. Our second approach

brings the spirit of traditional mutation testing to Alloy and

defines how to create mutants of Alloy models, compute

mutation testing results, and check for equivalent mutants

using SAT. The black-box test generation technique AGenBB

creates suites that include all (non-isomorphic) instances in

the given scope and brings the spirit of bounded exhaustive
testing for imperative programs [7], [35] to Alloy models.

The white-box test generation technique AGenCov brings the

spirit of coverage-directed input generation for imperative

programs [8], [18], [43] to Alloy models. AGenCov reduces

the problem of directed test generation for Alloy to constraint

solving where model coverage requirements (introduced by

AUnit) are part of the constraint. AGenCov iteratively builds

a minimal set of (non-isomorphic) tests to meet the chosen

criterion. The mutation-based generation technique AGenMu

also uses directed test generation but bases it on mutant

killing [55]. All three techniques use Alloy’s SAT-based back-

end for test generation and can be adapted to create suites

based on different solving strategies [33], [39].

This paper makes the following contributions: (1) Auto-
mated test generation for declarative models – we in-

troduce automated techniques to generate tests for Alloy

models to support black-box, white-box, and mutation-based

test generation; (2) Mutation testing for declarative models
– we introduce techniques to perform mutant generation,

mutation score calculation, and equivalent mutant detection

(when feasible) for Alloy models; (3) Implementation –

we implement a prototype that embodies our techniques as

well as the theoretical foundations introduced previously by

AUnit, specifically to provide test case execution and code

coverage computation in addition to automated test generation;

and (4) Experiments – we perform a two-fold evaluation to

show the efficacy of our approach. One, we compute model

coverage and mutation score (which is often considered as

the strongest test adequacy criterion in imperative programs)

for the generated tests. Two, we show our approach finds

real faults in several subjects, including all 19 faulty models

submitted as solutions to a homework question in a graduate

course in our Department.

II. ILLUSTRATIVE EXAMPLE

This section presents a small but representative example of

a faulty Alloy model to introduce some key concepts in Alloy,

AUnit, and our test generation techniques. First, we will step

through how to create our example Alloy model, then we will

demonstrate how AUnit tests can be used to detect the bug in

the model, and finally we will illustrate a mutant Alloy model.

Figure 1(a) (incorrectly) models an acyclic singly-linked list.

The signature (sig) declaration “sig List” introduces a set

of list atoms; similarly “sig Node” introduces a set of node

atoms. The keyword “one” declares List to be a singleton set.

Each signature declaration also introduces a binary relation.

The relation head maps lists to nodes. The relation link maps

nodes to nodes. Both head and link are partial functions

as declared by the keyword lone. The predicate (pred)

Acyclic defines acyclicity. The predicate body contains an

implication (“=>”) and intends to state that if the list has some

head node, there exists a node reachable from the head with no

link, i.e., the list is “null-terminated”. The formula “some E”

for expression E states that E is a non-empty set. The keyword

“some” also represents existential quantification. The operator

‘.’ is relational composition and ‘ˆ’ is transitive closure.

The expression “l.head.ˆlink” represents the set of nodes

reachable from l’s head following 1+ traversals along link.

Structuring Acyclic as an implication additionally allows for

the list to be empty, as without the implication, the existentially

quantified formula requires there to be at least one Node atom

in the List.

The command “run Acyclic” instructs the Alloy analyzer

to create an instance for predicate Acyclic using the default

scope – a bound on the universe of discourse – of 3. When

the command is executed, the analyzer finds a valuation for

List, head, Node and link, which satisfies the constraints

in Acyclic and the facts in the model w.r.t. the given scope,

i.e. considering up t o 3 Node atoms. Figure 1(b) graphically

shows an example instance for “run Acyclic”. Not all

valuations are instances. Figures 1(c) and (d) are not instances

for “run Acyclic” and thus will not be generated for this

command. While (d) is expected to be a non-instance (since it

has a cycle), (c) is a non-instance because of an overconstraint

fault in our model.

To explore this fault, we can look at our AUnit tests.

The predicates Val1, Val2, and Val3 together with their

respective labeled run commands Test1, Test2, and Test3

represent three AUnit tests. Intuitively each predicate repre-

sents a test input and each command represents a test oracle.

Test1 and Test3 pass, but Test2 fails and exposes a fault

in the model. The valuation Val2 is expected to be a valid
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one sig List {
head: lone Node }

sig Node {
link: lone Node }

pred Acyclic() {
some List.head =>
some n: List.head.ˆlink |
no n.link }

run Acyclic

one sig List {
head: lone Node }

sig Node {
link: lone Node }

pred Acyclic() {
some List.head =>
some n: List.head.*link |
no n.link }

run Acyclic
(a) (b) (c) (d) (h)

pred Val1() {
some disj L: List {
List = L
no Node
no head
no link }}

Test1: run { Val1 and
Acyclic }

pred Val2() {
some disj L: List {
some disj N: Node {
List = L
Node = N
head = L -> N
no link }}}

Test2: run { Val2 and
Acyclic }

pred Val3() {
some disj L: List {
some disj N: Node {
List = L
Node = N
head = L -> N
link = N -> N }}}

Test3: run { Val3 and
!Acyclic }

(e) (f) (g)

Fig. 1: (a) Singly-linked acyclic list model – faulty. (b) Instance: empty list. (c) Non-instance: acyclic list with 1 node. (d) Non-

instance: cyclic list with 1 node. (e) Passing test with valuation (b). (f) Failing test with valuation (c). (g) Passing test with

valuation (d). (h) Mutant of model (a) – transitive closure operator (‘ˆ’) is replaced with reflexive transitive closure (‘∗’).

acyclic list but the predicate Acyclic is overconstrained and

erroneously disallows it; the fault is in the use of transitive

closure (‘ˆ’) instead of reflexive transitive closure (‘*’). Note

that Val3 is not acyclic and Test3 passes since the test oracle

correctly identifies it (!Acyclic).

For the Alloy model in Figure 1(a) and the default scope

of 3, our black-box generation technique AGenBB creates 157

inputs, our coverage-driven test generation technique AGenCov

creates 10 inputs, and our mutation-based technique AGenMu

creates 10 inputs. Each of AGenBB , AGenCov , and AGenMu

produces all 3 valuations shown in Figure 1.

Figure 1(h) shows an example mutant created by our mutant

generator for the faulty model (Figure 1(a)), where the operator

‘ˆ’ is replaced with the operator ‘*’. This mutant is killed by

test case (f), which fails against the faulty model (Figure 1(a))

but passes against this mutant. Therefore, the mutant Alloy

model in Figure 1(h) addtionally represents one possible

solution for fixing the original faulty model.

III. AUTOMATED TEST GENERATION USING AUNIT

This section presents our automated test generation ap-

proach. We introduce three basic techniques. AGenBB is a

black-box technique which uses constraint solving to enumer-

ate solutions for commands that execute (or check) existing

predicates (or assertions) but does not directly utilize the way

the Alloy model is written (Section III-A). AGenCov is a white-
box technique, which performs targeted test generation driven

by AUnit’s model coverage requirements (Section III-B).

AGenMu is a mutation-based technique, which we describe

after we introduce mutation testing for Alloy in Section IV.

A. Enumeration-based Input Generation

Algorithm 1 embodies our enumeration directed approach;

conceptually the algorithm systematically enumerates valu-

ations by running the empty command, creates commands

based on assertions and predicates (or their negations), and

creates valuation-command pairs to form tests. The algorithm

starts by executing the empty command ε (run {}) over the

given model. We selected the empty command because ε can

be executed for any model. A naive approach would be to

simply form test cases as follows: 〈enumerated instance i,
ε〉. For instance, we could build a test suite for our acyclic

singly-linked list from Figure 1(a) as simply 〈〈Figure 1(b), ε〉,
〈Figure 1(c), ε〉, 〈Figure 1(d), ε〉〉. However, when a tester

manually inspects the generated valuations to see if their

shapes match expectations, the tester can only validate the

behavior of valuations over the facts of the model. To produce

a more robust, informative test suite, we need to invoke other

paragraphs in the model. Therefore, rather than using ε as the

only command for our tests, we use it to get a starting base

of valuations.

Specifically, for each instance i enumerated by executing ε,
we add a test case per each predicate and assertion paragraph

present in the model, using the negation of the paragraph if

the valuation fails the paragraph (the i.eval(P) call is false).

Since all these valuation must satisfy the facts of the model,

to reduce the number of overall tests, we do not explicitly

generate tests that have ε as their command. Taking this into

account, our new test suite for the model in Figure 1(a) is:

〈〈Figure 1(b), run Acyclic〉, 〈Figure 1(c), run Acyclic〉, 〈Figure

1(d), run !Acyclic〉〉.
While we now have a more robust test suite, all the tests

have a common limitation: we never generate any tests in

which the facts of the model are violated. Therefore, we

create a second Alloy model, M ′, in which all the facts in

the model are replaced with the disjunction of the negation

of all the facts (negateFacts). Any instance satisfying M ′
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Algorithm 1: AGenBB – Enumeration-based Input Gen-

eration
input : Alloy Model M , Scope S
output: Test Suite Tsuite

Tsuite ← [];
Command empty ← new Command(S, run {})
A4Solution solSpace ← execute(M, empty)
if solSpace.isSatisfiable then

foreach instance i in solSpace do
foreach Alloy paragraph P in M do

if P == PRED or P == ASSERT then
if i.eval(P) then

Tsuite.add(new TestCase(i, P ))
else

Tsuite.add(new TestCase(i, !P ))

AlloyModel M’ = negateFacts(M)
for k ← 0 to S do

Command empty ← new Command(k, run {})
solSpace ← execute(M’, empty)
if solSpace.isSatisfiable then

Tsuite.add(new TestCase(i, run {} expect 0))

return Tsuite

violates at least one fact formula. If we repeat the process

with M ′ (run ε, enumerate all instances, build up a test suite)

we end up with extremely large state spaces, resulting in an

unreasonable number of valuations to consider. Instead, we

focus on enumerating one instance per each size in the scope.

If ε is satisfiable for the tailored scope, a test case of the form

〈first instance enumerated, run ε expect 0〉 is added to the

test suite. An expect clause is an Alloy construct used to

state whether a command should be satisfiable (expect 1)

or not (expect 0). By appending expect 0 to the empty

command, the tester is informed that the associated valuations

do not adhere to the facts of the model.

We implemented Algorithm 1 to embody AGenBB using the

Alloy Analyzer, which is the enumerator associated with the

standard Alloy distribution. Although the SAT solver needs to

be invoked when we first execute ε and enumerate instances,

we can actually build up the remainder of the test suite

without invoking the SAT solver: by using the Kodkod tool’s

evaluator API [51]. We invoke the evaluator by passing

a test’s valuation and an Alloy formula for a predicate

or assertion. The evaluator returns true if the instance

satisfies the formula and false otherwise, indicating the

shape of the test case’s command.

B. Coverage-Directed Input Generation

Our coverage-directed test generation technique AGenCov

utilizes a feedback-loop that ensures each new test gener-

ated covers some previously unsatisfied coverage requirement.

Specifically, the algorithm iteratively: solves the current for-

mula to generate a test, obtains its coverage, and adds a

logical constraint to update the current formula and capture

some uncovered requirement(s). While these constraints place

restrictions based on the coverage obtained for previously

generated valuations, the targeting constraints do not include

those valuations in any direct form. Moreover, the targeting

constraints do not directly depend on the size of the previously

generated valuations.

Table I shows the targeting constraint templates for Alloy

constructs based on AUnit’s coverage requirements. Signature,

relation and expression coverage requirements center around

the size of the sets for the corresponding Alloy construct,

while formula coverage requirements center around truth val-

ues. The cardinality subgroup outlines additional requirements

for quantified formulas, where “d” is the domain and “b”

is the formula in the body. Futher details of the coverage

requirements can be found elsewhere [49], [50]. To add a

targeting constraint to a model, we write the constraint as a

fact, guaranteeing its satisfaction. We call a model with a

targeting constraint a targeting model.
To illustrate, for our list example, let our coverage require-

ment of interest be “|s| = 0” for the signature declaration

List (i.e., the number of List atoms equals zero). Then, the

targeting constraint appended to Figure 1(a) is: fact {#List
= 0}.

There are different ways in which we can include coverage

requirements in the model. One way is unique-targeting:

iterate over all requirements and target each uncovered re-

quirement by producing an associated targeting model, exe-

cuting the empty command, ε, over the model, and using a

satisfying instance, if any, as a valuation for a test case. An

issue with unique-targeting is that each uncovered criterion

is examined in isolation, and each infeasible criterion is only

revealed through a unique invocation of SAT. To address this

issue, we introduce multi-targeting, which explores multiple

requirements together. Specifically, our targeting constraint is

a disjunction of all unexplored requirements’ targeting con-

straints. The multi-targeting template for a targeting constraint

is:

For all unexplored requirements c1 ... cn:
c1’s template || ... || cn’s template

where ‘template’ refers to the unexplored coverage require-

Alloy Coverage Targeting
Construct Requirement Constraint

Signature s
|s| = 0 {#s = 0}
|s| = 1 {#s = 1}
|s| ≥ 2 {#s > 1}

Relation r
|r| = 0 {#r = 0}
|r| = 1 {#r = 1}
|r| ≥ 2 {#r > 1}

Expression e
|e| = 0 {#e = 0}
|e| = 1 {#e = 1}
|e| ≥ 2 {#e > 1}

Formula f
f = true { f }
f = false { !f }

Cardinality

|d| = 0 {#d = 0}
|d| = 1, b = True {#d = 1 && b}
|d| = 1, b = False {#d = 1 && !b}
|d| ≥ 2, b = True {#d > 1 && b}

{#d > 1 && b
|d| ≥ 2, some e: d | b

b = True & False some e: d | !b}
|d| ≥ 2, b = False {#d > 1 && !b}

TABLE I: Targeting Constraint Templates
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Algorithm 2: AGenCov – Coverage-Directed Input Gen-

eration
input : Alloy Model M , Scope S
output: Test Suite Tsuite

List criteria ← M.extractRequirements()
numExplored ← 0
AlloyModel targeting ← null
Command empty ← new Command(S, run {})
while numExplored != criteria.size() do

TargetingConstraint target ← getNextTC()
targeting ← appendTarget(M, target.formula)
A4Solution solSpace ← execute(targeting, empty)
if !solSpace.isSatisfiable() then

targeting ← removeFacts(M)
targeting ← appendTarget(targeting, target.formula)
solSpace ← execute(targeting, empty)

if solSpace.isSatisfiable() then
Instance i ← solSpace.getInstance()
foreach uncovered c in criteria do

if i.eval(c.targetingConstraint()) then
c.markCovered()
numExplored++
if i.eval(c.getPara()) then

Tsuite.add(new TestCase(i, c.getPara())
else

Tsuite.add(new TestCase(i, !c.getPara())

else
foreach criteria c in target do

c.markInfeasible()
numExplored++

return Tsuite

ment’s targeting constraint in Table I. For our running example

model, the first multi-targeting constraint would cover all

35 requirements for the model: (#List = 0) || (#List

= 1) || ... || !(no n.link).

Algorithm 2 encapsulates our coverage-driven approach.

The algorithm runs as long as there is some coverage require-

ment which has not yet been explored, i.e. is not covered by

a previous valuation or marked infeasible. First, all coverage

requirements from the model are collected into a list (criteria),

which will store the coverage landscape of the model as

the algorithm runs. Next, a targeting model is created by

appending the targeting constraint, which will either reflect the

next criteria to target under the unique-targeting guideline or

the disjunction of all remaining criteria to explore under the

multi-targeting guideline (getNextTC). Then, ε is executed

over the targeting model. If the call is unsatisfiable, one of two

possibilities hold: the requirements in the targeting constraint

violate the facts of the model or the requirements are currently

infeasible for the given scope. To determine which, we form

a new targeting model with all facts removed except the

targeting constraint (removeFacts) and execute ε. Should this

call also be unsatisfiable, then all criteria being targeted cannot

currently be covered w.r.t. the given scope and are marked

infeasible.

However, should we produce a satisfiable solution space

from either ε invocation, we have successfully targeted at least

one new coverage requirement. We obtain the first instance, i,
and analyze i for coverage information. We mark any require-

ment c that is covered for the first time as covered, removing c
from the pool of requirements to target in future iterations. A

requirement is known to be covered if the evaluator returns

true for c’s targeting constraint. Then, we generate a test

case where the valuation is i and the command is either the

predicate or assertion (or negation of when appropriate) that

contains c. If c is located in a fact paragraph, the command is

ε. For example, if Figure 1(b) is the first instance enumerated,

the test 〈Figure 1(b), run Acyclic〉 would be created because

the valuation in Figure 1(b) covers formulas and expressions in

Acyclic, such as #List.head = 0 and some List.head

= false).

As with AGenBB , AGenCov uses the evaluator to gen-

erate tests without additional invocations of SAT solvers.

The evaluator is able to determine the shape of a test

case’s command when passed a requirement’s origin paragraph

(c.getPara()). Moreover, the evaluator is able to provide

all coverage information.

IV. MUTATION TESTING FOR ALLOY

This section presents μAlloy, our approach for mutation

testing of Alloy models. Specifically, we present the mutation

operators and the core algorithms for mutant generation, muta-

tion score computation, equivalent mutant checking, mutation

based test generation and minimal mutation test selection.

Further details can be found in the second author’s Masters

thesis [52].

Mutation operators for Alloy Table II defines μAlloy’s muta-

tion operators, which is designed by following the convention

of mutation operators for imperative languages, e.g. Java.

MOR mutates signature multiplicity (e.g. lone sig to one
sig). QOR mutates quantifiers all, some, no, etc. UOR
and BOR define operator replacement for unary and binary

operators. For example, UOR mutates a.∗b to a.ˆb and BOR
mutates a=>b to a<=>b. IOBU inserts an operator before an

unary expression (e.g. a.b to a.∼b). OD defines operator

deletion (e.g. a.∗ ∼b to a.∗b). BOE exchanges operands for

a binary operator (e.g. a => b to b => a). IEOE exchanges

the operands of imply-else expression (e.g. mutate a =>
b else c to a => c else b). IID increases/decreases

integer values by 1.

Algorithm 3: Mutant generation. The algorithm iterates

through each Alloy Abstract Syntax Tree (AST) node and

TABLE II: Mutation Operators

Mutation Description
Operator
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
IOBU Insert Operator Before Unary Expression
OD Operator Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange
IID Integer Increment and Decrement
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Algorithm 3: Mutant generation algorithm

Input: Alloy model module and mutation operators muOps
Output: Valid Alloy mutants on the file system

// Visit each AST node and see if mutation operators apply.
while module.hasMoreASTNodes() do

node = module.findNextASTNode()
// Apply mutation operators to generate mutants.
foreach muOp ∈ muOps do

if canApplyMutationOperator(node, muOp) then
applyAvailableMutationOperator(node, muOp)
// If the mutant can be compiled without warning

and error, save it.
if isValid(module) then

saveMutant(module)

// Undo mutation.
undoMutation(node)

Algorithm 4: Mutation score computing algorithm

Input: Alloy model m, mutants mus and AUnit test suite ts
Output: Mutation score

// Run the test suite against the original model and record the
test result. The test result shows which test case is allowed or
disallowed in the model.

mTestResult ← runTestSuite(m, ts)
// Initialize the number of killed mutant to 0.
numMutantKilled ← 0
// Run the test suite against each mutant and see if the test

result is different.
foreach mu ∈ mus do

muTestResult = runTestSuite(mu, ts)
// If the result is different, then the mutant is killed. The

test result is considered different if a test case is allowed
in the original model but disallowed in the mutant, or vice
versa.

if isDifferent(mTestResult, muTestResult) then
numMutantKilled++

// Compute the percentage of mutants got killed.
return numMutantKilled / mus.size()

applies mutation operators as applicable. Once a node is

mutated, μAlloy saves the new AST as a new model and

compiles it. If no warning or error is found, μAlloy saves

the new model to the local disk as a valid mutant.

Algorithm 4: Mutation score computation. Following tra-

ditional mutation testing, μAlloy runs the test suite against

the original model and records each test outcome (as defined

by AUnit). Next, μAlloy runs the test suite against each

one sig S {
r: T lone->one U

}
sig T, U {}
run {}

(a)

sig S { r: T -> U }
sig T, U {}
pred sigFact() {
one S
all s: S | all t: T | one t.(s.r)
all s: S | all u: U | lone (s.r).u }

run sigFact

(b)

Fig. 2: Signature canonicalization

Algorithm 5: Equivalent mutant checking algorithm

Input: Alloy model m and mutant mu
Output: true if equivalent, false otherwise

// Initialize equivalent checking model.
equivCheckModel ← emptyModel
// If mutation is in sig, cononicalize it.
if differsInSig(m, mu) then

// canonicalizeSig() removes the constraint of the sig and
put the constraint into a predicate. mSig and muSig are
same; mSigConstraint and muSigConstraint are predicates.

mSig, mSigConstraint = m.canonicalizeSig()
muSig, muSigConstraint = mu.canonicalizeSig()
equivCheckModel.append(mSig + mSigConstraint +

muSigConstraint)
// Append unaffected sig declarations.
mSigs = extractUnaffectedSigs(m)
equivCheckModel.append(mSigs)
equivAssert = buildEquivCheckAssertFrom(mSigConstraint,

muSigConstraint)
equivCheckModel.append(equivAssert)

else
// If mutation is not in sig, append all sigs.
mSigs = extractAllSigs(m)
equivCheckModel.append(mSigs)

// If mutation is in pred, add both mutated and original preds.
if differsInPred(m, mu) then

mPred = extractPred(m)
muPred = extractPred(mu)
equivCheckModel.append(mPred + muPred)
// Append unaffected pred declarations.
mPreds = extractUnaffectedPreds(m)
equivCheckModel.append(mPreds)
equivAssert = buildEquivCheckAssertFrom(mPred, muPred)
equivCheckModel.append(equivAssert)

else
// If mutation is not in pred, append all preds.
mPreds = extractAllPreds(m)
equivCheckModel.append(mPreds)

// If mutation is in fact, convert the fact to a pred and add it.
if differsInFact(m, mu) then

mFactPred = convertToPred(extractFact(m))
muFactPred = convertToPred(extractFact(mu))
equivCheckModel.append(mFactPred + muFactPred)
// Append unaffected fact declarations.
mFacts = extractUnaffectedFacts(m)
equivCheckModel.append(mFacts)
equivAssert = buildEquivCheckAssertFrom(mFactPred,

muFactPred)
equivCheckModel.append(equivAssert)

else
// If mutation is not in fact, append all facts.
mFacts = extractAllFacts(m)
equivCheckModel.append(mFacts)

solutions = runEquivCheckAssertion(equivCheckModel)
// If no counter example is found, the mutant is equivalent.
if solutions.isEmpty() then

return true
// If a counter example is found, we can use it to generate a

test that kills the mutant. So this algorithm is same as
mutation based test generation algorithm.

// tests = generateTests(solutions)
// saveToFiles(tests)
return false
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Algorithm 6: Minimal tests selection greedy algorithm

Input: Alloy model m, mutants mus and test suite from mutation
based test generation ts

Output: Approx. minimum set of tests that gives maximum
mutation score

selectedTests ← emptySet
killedMutants ← emptySet
// For each test in the test suite, keep track of the mutants that

can be killed by that test.
foreach t ∈ ts do

// Get the mutant that is known to be killed by the test.
killedMutant = t.getKilledMutant()
// If the mutant is previously killed by a test, skip it.
if killedMutants.contains(killedMutant) then

continue
// If the mutant has not been killed by any test, it is killed

by this test so we add the test.
selectedTests.add(t)
// Run the test against the original model and collect result.
mResult = runTestCase(m, t)
// Run the test against each mutant and record the mutants

killed by this test.
foreach mu ∈ mus do

// Skip mutants that are killed by the selected tests.
if killedMutants.contains(mu) then

continue
// Run the test against mutant and collect result.
muResult = runTestCase(mu, t)
// If results differ, the mutant is killed by the test.
if isDifferent(mResult, muResult) then

killedMutants.add(mu)

return selecetdTests

mutant and collects the corrsponding test outcomes. If the test

outcome for any test differs between the original model and

the mutant, the mutant is killed. Finally, μAlloy computes the

mutation score and reports it.

Algorithm 5: Equivalent mutant checking. We reduce the

equivalent mutant checking problem to a constraint solving

problem and use the Alloy tool-set to detect equivalent mu-

tants. The reduction can lead to higher-order fomulas, so we

employ Alloy∗, an Alloy based toolset that provides additional

support for higher-order quantifiers where allowed by the

Alloy syntax [36].

To save space, we show how to handle mutations on

signatures, predicates and facts. Alloy functions and assertions

can be handled similar to predicates and facts. The algorithm

first initializes the equivalence checking model. If the mutation

happens in a signature, then we canonicalize the signature

in both original model and mutant (Figure 2). Basically, we

extract the signature constraint into a predicate and relax

the signature multiplicity and relation cardinality constraints.

Then, the algorithm builds an Alloy assertion to check if the

signature constraints are equivalent. Finally, the algorithm adds

the canonicalized signature declaration, generated predicates,

all unaffected components and the equivalence checking as-

sertion into the equivalence checking model. If no counter

example is found, the original model and the mutant are

equivalent – up to the chosen scope. The algorithm treats

TABLE III: Subject alloy modules. For each subject, lines

of code (LOC), number of predicates (# p), number of basic

signatures (# basic sig), number of binary relations (# bin rel),
number of ternary relations (# ter rel), number of variables,

number of primary variables and number of clauses are shown.

Pair (a, b) shows minimum (a) and maximum (b) over all

commands in the model.

Module LOC # p # basic # bin # ter vars primary clausessig rel rel vars
List 15 1 2 2 0 (195,351) (24,30) (274,521)
Binary Tree 20 1 1 2 0 (170,289) (21) (249,394)
Full Tree 29 3 1 2 0 (170,429) (21) (249,1086)
Handshake 28 1 1 2 0 (420,488) (34) (704,926)
N Queens 26 2 1 2 0 (1509,2014) (99,105) (3858,5221)
Farmers 40 2 2 3 0 (791,888) (64, 80) (2147,2366)
Dijkstra 61 8 3 0 2 (296,1103) (57) (374,2066)

predicates and facts similarly. Specifically, to check mutation

in a fact, the algorithm converts the fact into a predicate with

the same body for equivalence checking (as done for signature

constraints).

Algorithm 6: Mutation-based test generation. Algorithm 5

already provides a technique for test generation because the

equivalence checking assertion can be used to generate counter

examples when the original model and the mutant are not

equivalent. The counter examples can be directly translated

into tests to kill mutants. Thus, our mutation-based test gen-

eration technique first creates mutants and then creates tests

that kill the non-equivalent mutants.

Algorithm 6 selects a minimal set of mutation based tests

that kill the non-equivalent mutants. Note that each test gener-

ated by the equivalent mutant checking algorithm is known to

kill at least one mutant. This algorithm uses a greedy approach

and runs each test against the original model and each mutant

not yet killed, and compares the test outcomes. If they differ,

the mutant is killed and the algorithm records the killed mutant

and selects that test.

V. EVALUATION

This section presents an experimental evaluation of our test

generation and mutation testing approaches. Our evaluation is

two-fold. One, we use a suite of correct Alloy subjects to mea-

sure model coverage and mutation score (Section V-A). Two,

we use a suite of faulty subjects with real faults, including

standard Alloy models and graduate homework submissions,

to evaluate fault finding ability (Section V-B).

A. Model coverage and mutation score

Subjects. We use seven correct Alloy models for evalu-

ation. Four of these models, namely SinglyLinkedList,

BinaryTree, FullTree and N-Queens, are written by

us, and the rest are from the standard Alloy distribution.

These models range from simple illustrative examples like

singly-linked list to more complex examples like Dijkstra’s

mutual exclusion. SinglyLinkedList, BinaryTree, and

FullTree capture the constraints of the corresponding data

structures. N-Queens solves the problem of how to place N
number of queens on a chess board of size N × N without
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TABLE IV: Test suite generation and execution.

Alloy
Model #Vals #SAT #Tests Tgen [ms] Mod Cov Texe [ms] Tcov[ms]

List 1006 1012 4010 1 89.2% 870 9

Binary Tree 1004 1010 3004 1 91.5% 1824 2

Full Tree 1004 1010 5004 1 90.5% 3410 4

Handshake 32 38 86 1 88.6% 186 15

N Queens 180 185 1888 3 84.0% 4585 56

Farmers 10 16 927 2 57.7% 205 21

Dijkstra 10 16 2893 2 64.7% 147 15

Coverage
Model #Vals #SAT #Tests Tgen [ms] Mod Cov Texe [ms] Tcov[ms]

List 8 9 10 467 100.0% 2 2

Binary Tree 8 9 8 162 98.6% 1 2

Full Tree 8 9 15 228 95.3% 3 3

Handshake 11 12 11 423 91.4% 5 5

N Queens 7 8 13 181 97.8% 2 3

Farmers 12 13 18 1171 87.37% 25 7

Dijkstra 12 13 14 2337 87.5% 15 7

Mutation
Model #Vals #SAT #Tests Tgen [ms] Mod Cov Texe [ms] Tcov[ms]

List 10 10 10 9 67.8% 1 1

Binary Tree 10 10 10 10 73.2% 1 1

Full Tree 15 15 15 15 65.7% 2 1

Handshake 11 11 11 13 65.8% 1 3

N Queens 17 17 17 55 73.4% 1 2

Farmers 14 14 14 29 66.4% 27 25

Dijkstra 40 40 40 123 63.0% 18 20

conflicts. Handshake encapsulates the Halmos handshake

logic problem. Farmers outlines a common logic problem

in which a person (the farmer) has to get three objects

(fox, chicken, and grain) across a river without an object

eating another. Lastly, Dijkstra captures Dijkstra’s mutual

exclusion algorithm to prevent deadlocks. Table III gives key

characteristics of the subjects.

Model coverage results. Table IV shows the details for

various attributes related to generation and execution of the test

suites, broken down by technique. Model is the Alloy model

under test. #Vals is the number of valuations generated. #SAT
is the number of calls made to the backend SAT solver during

test generation. #Tests is the number of test cases generated.

The SAT solver is invoked either when a command in the

module is executed or the constraint to create the next instance

is solved. Therefore, for all three techniques, this value is the

number of valuations plus the number of commands executed

during test generation time. “Tgen [ms]” is the time to generate

the tests, starting with the first SAT invocation and ending

once writing the test(s) to a file finishes. “Mod Cov” shows,

as a percentage, the model coverage achieved by the tests.

Model coverage considers all coverage requirements produce

by all Alloy elements (signatures, relations, expressions and

formulas) regardless of their location within the model. Since

model coverage subsumes the other coverage metrics in AU-

nit [50], we only use model coverage for evaluation. “Texe

[ms]” is the time to execute the tests, which is the time

to check whether each valuation is an instance of its paired

command. “Tcov[ms]” is the cumulative time that includes the

test execution time and the time to calculate model coverage.

In all cases, AGenBB produces the largest test suites, and

takes the longest time to both generate and execute test suites.

Since this technique can produce a very large number of tests,

for our evaluation, we capped the number of instances that can

TABLE V: Mutant Generation

Module # gen # warn # error # valid t[ms]
List 47 3 15 29 691
Binary Tree 158 0 93 65 1673
Full Tree 208 0 120 88 1669
Handshake 401 0 280 121 3323
N Queens 296 24 170 102 3273
Farmers 363 11 240 112 4741
Dijkstra 829 97 531 201 13598

TABLE VI: Equivalent Mutant Check with Scope of 5

Module # mu # eq # neq # hi t[ms]
List 29 2 27 3 1167
Binary Tree 65 6 59 0 1216
Full Tree 88 6 82 0 1678
Handshake 121 43 78 0 2681
N Queens 102 9 93 0 3557
Farmers 112 13 99 0 5208
Dijkstra 201 14 187 3 18094

be enumerated from any single command to 1000 for models

without parameterized paragraphs, and 10 for models with

parameterized paragraphs. As expected, AGenBB makes the

most SAT calls. Furthermore, since Alloy’s default symmetry-

breaking does not remove all isomorphisms, some instances

generated form redundant tests. Naturally, since enumeration

is oblivious of model coverage criteria, the resulting suites are

not minimal for the level of coverage achieved. However, due

to producing many valuations, AGenBB does, on average, have

high model coverage. AGenBB’s model coverage is hindered

by exploring only a few valuations which violate at least one

fact paragraph. Recall that enumerating all such valuations

would likely create enormous test suites and this choice is

a trade off to avoid a huge increase in test generation and

execution times.

For all subjects, AGenCov produces a relatively small test

suite: no more than 18 for any subject. Test generation,

execution, and coverage computation altogether take less than

a seconds for most subjects. In comparison to the other tech-

niques, the coverage-directed generation technique produces

tests that give the highest coverage for all subjects. Indeed,

this technique is by design constructed to focus on increasing

model coverage. A nice property of the technique is that it

only generates non-isomorphic tests – by construction, there

are no two tests that cover the same set of requirements. Note

however, coverage-directed generation does not produce all

non-isomorphic tests.

AGenMu produces small test suites, with the largest test

suite being over the Dijkstra model at 40. All other models

have less than 20 tests. AGenMu’s test suites are the fastest to

generate, execute and calculate coverage over. AGenBB’s test

suites are generated faster but take longer to execute, while

AGenCov’s test suites take about the same time to execute but

can be slower to generate compared to AGenMu’s test suites.

AGenMu never takes coverage information into account, and

usually has the lowest model coverage percentage.

Mutation Testing Results Table V shows the results for

mutant generation. For each subject, the table gives the number

of mutants created (# gen), the number of mutants that had
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TABLE VII: Mutation Testing

Module # neq Alloy Coverage Mutation
% k t[ms] % k t[ms] % k t[ms]

List 27 92.6 120101 85.2 664 100 545
Binary Tree 59 59.3 137686 54.2 894 100 972
Full Tree 82 70.7 429942 58.5 2426 100 1997
Handshake 78 76.9 341575 11.5 3363 100 3072
N Queens 93 87.1 2297711 69.9 4943 100 4099
Farmers 99 2.0 233811 2.0 2995 100 2986
Dijkstra 187 57.8 5039570 29.9 166154 100 94232

compilation warnings (# warn) and errors (# error), the

resulting number of valid mutants (# valid) that had no

warning or error, and the total generation time in milliseconds

(t[ms]). In general, larger Alloy models have more applicable

mutation operators, which leads to more mutants compared to

smaller models. Complicated models also tend to have more

invalid mutants. Note that some mutants of the models contain

higher order logic, which the traditional Alloy analyzer cannot

handle. We remove such mutants from evaluation because they

can be trivially killed. The time to generate valid mutants

ranges from about 7 seconds to 14 seconds, and the maximum

number of mutants generated from is 201.

Table VI shows the results of the mutant equivalence

checking. For each subject, the table gives the number of valid

mutants (# mu), the number of equivalent mutants (# eq),

the number of non-equivalent mutants (# neq), the number of

mutants where equivalence checking introduces higher order

logic (# hi) and the time to check equivalent mutants (t[ms]).
Recall that while all valid mutants are themselves first order

models, checking if two Alloy models are equivalent may lead

to a higher order formula. We use Alloy∗ to solve all such

higher order formulas. In our case, all our equivalent checking

models can be solved using Alloy∗. Among all subjects,

the handshake model yields more equivalent mutants mostly

because of the way it is written: it contains many constraints

in the signature declarations and facts and those constraints

overlap largely so that many mutations do not change the

meaning of the model. The time to check equivalent mutants

ranges from 1 second to 18 seconds as the number of mutants

increases.

Table VII shows the results of mutation testing. For each

subject, the table gives the number of non-equivalent mutants

(# neq), the mutation score (% k) and the time taken for

running mutation testing algorithm (t[ms]) with respect to test

suites generated using Alloy enumeration, coverage-directed

generation and mutation based minimal test generation.

The mutation based technique generates tests that kill all

non-equivalent mutants, which self validates our mutation

based test generation algorithm. In all subjects, the Alloy

enumeration technique uniformly gives higher mutation score

compared to the coverage based technique. The exception is

the farmers model, where both techniques only kill 2.0%

of the non-equivalent mutants. These poor mutation scores are

because most tests generated lead to unsatisfiable formulas

in test execution because the Alloy enumeration technique

generates predicate invocations with all permutations of pa-

rameters. Most parameter permutations make the tests trivially

unsatisfiable for the original model and all mutants, which

means those tests do not kill any mutant. Another reason is

that the farmers problem contains a very limited number

of solutions given our scope of 5, which makes most tests

unsatisfiable in the first place. The coverage-based technique

kills only 11.5% of the mutants for the handshake model,

it is mainly because the coverage based technique only needs

to generate a small number of tests to achieve full coverage

due to the nature of the model, which limits the ability to kill

mutants.

B. Finding real faults

Known buggy models. We consider next two models that are

faulty versions of two of our subjects in Section V-A. Faulty

Farmers and Dijkstra models are from Alloy Analyzer

v4.1.10 that shipped these buggy versions; the current Alloy

release includes the corrected versions after the Alloy users

discovered and reported the bugs. The faulty Farmers was un-
derconstrained; the CrossRiver predicate checked the “eat-

ing” behavior on only one side of the river, enabling Objects

which should have eaten each other to co-exist alone. In faulty

Dijkstra, when the predicate GrabbedInOrder was in-

voked from GrabOrRelease, the model was overconstrained
and only produced a few trivial instances. We generated test

suites for each faulty model using all 3 techniques (AGenBB ,

AGenCov and AGenMu). If the test generation technique was

able to produce a test which encapsulated the faulty behavior,

then the bug is detected.

Table VIII summarizes the results of the three techniques.

The column Fail shows if the technique creates a failing test

and finds the fault. Both the AGenBB and the AGenCov multi-

targeting find all faults in both models whereas AGenMu only

finds the fault in the Farmers model. AGenBB continues to

create large test suites, which take significant time to produce

and execute. For instance, the Dijkstra model contains no

facts; therefore, the solution space for the empty command is

substantially large: any instance that adheres to the signature

declarations is valid. AGenBB is able to enumerate a diverse

range of valuations, but each valuation produces multiple tests.

The faulty Farmers model produces 41 valuations, but 9769

tests. AGenCov does not suffer from this limitation, but is still

able to detect the faults.

Homework submissions. We consider next 20 homework

submissions for one question that presented a partial model a

sorted, singly-linked-loop-list, where the last list node points

to itself. The partial model contained 5 signature declarations,

one fact skeleton and 5 predicate skeletons to be filled in

by the students. Appendix A shows the partial model given in

the homework. 19 of the 20 homework solutions were faulty.

Using each technique, we produced a test suite over all 20

models. As with the known-buggy models, if the test suite

produces a test which shows some buggy behavior, then the

test suite has detected fault(s).

Table IX summarizes the results of the three techniques. The

column Fail shows the ratio of faulty models detected with
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TABLE VIII: Known Buggy Models – AUnit test generation fault finding ability.

Model Alloy Coverage Mutation
Fail #Vals #SAT #Tests Fail #Vals #SAT #Tests Fail #Vals #SAT #Tests

Farmers Y 41 47 9769 Y 13 14 15 Y 12 12 12

Dijkstra Y 1004 1010 287004 Y 17 18 61 N 36 36 36

TABLE IX: Homework submissions – AUnit test generation fault finding ability.

Alloy Coverage Mutation
Fail #Vals #SAT #Tests Fail #Vals #SAT #Tests Fail #Vals #SAT #Tests

16/19 (223,504) (227,509) (26296,83753) 19/19 (13,18) (14,19) (16,47) 17/19 (10,35) (10,35) (10,35)

respect to the total number of faulty models. All 3 technique

correctly identified the non-faulty student submission model.

Details of the generated test suites are shown in pairs (a,b)

showing the minimum and maximum values across test suites

produced over all 19 submissions. AGenBB detected bugs

in a majority of the submissions, but was unable to detect

a fault in 3 out of the 19 buggy models despite producing

extremely large test suites. The loop-list has a number of

predicates with parameters, which means a single valuation

does not become a single test per command but a single test per

unique combination of values for the command’s parameter(s).

As a result, for our evaluation, we “timed out” the technique

after enumerating 500 instances, generally producing suites of

size > 80, 000. AGenBB struggled to detect faults located in

facts, which, as expected, is a limitation of the AGenBB

techniques. The solution space for negated facts is typically

much larger than the valid solution space. AGenBB had greater

success at finding faults in the known-buggy models, whose

faults were not in the facts of the model.

AGenMu had more success than AGenBB at finding faults

in student submissions; however, the technique did miss faults

in 2 student submissions. In an interesting case, one of the

submissions that AGenMu fails to find faults in is a submission

in which the student did not fill in the predicate skeletons.

In this case, AGenMu fails to generate any tests over the

predicates, thus missing the faults. Yet, even with completed

predicates, faulty behavior can be missed by AGenMu, as seen

by the other student submission and the faulty Dijkstra

model.

AGenCov was the most effective technique, finding a bug

in every faulty student submission; moreover, it has small test

suites, which can reasonably be inspected manually by end

users to determine if the actual behavior matches the desired

behavior. In the end, AGenCov is the only technique to detect

a bug in every model in our suite of faulty subjects.

Our evaluation of AUnit test generation using homework

submissions made us specifically appreciate AUnit. Aside from

this evaluation, we had manually graded the submissions and

some of the bugs found by AUnit were previously missed

by us. These bugs were usually in relation to non-obvious

compounding formulas; Alloy’s expressive nature can make it

difficult to reason about a group of formulas together even if

it is easy to understand them separately.

VI. RELATED WORK

Efforts to introduce support for testing in its traditional form

for Alloy can be found in a number of previous projects. For

example, the Alloy tool-set has built in support for labeled

commands, and allows running all commands; moreover, each

command can use the expect clause to indicate whether a

solution is expected or not. Indeed, we leverage this function-

ality in this paper to implement AUnit [50] tests. Moreover,

Montaghami and Rayside’s support for partial instances [37],

[38] takes inspiration in part by the need to bring traditional

testing ideas to Alloy. Furthermore, the Alloy analyzer’s sup-

port for highlighting unsat cores helps with debugging faulty

unsatisfiable formulas; we conjecture AUnit tests together

with unsat cores provide an effective basis for introducing

fault localization [26] and program repair [16] for Alloy.

To our knowledge, AUnit is the only previous project that

describes test cases, test execution, and model coverage (in

their traditional spirit) for Alloy. This paper builds on AUnit

to introduce automated test generation and mutation testing

for Alloy, thereby providing a comprehensive test automation

framework for Alloy.

Symmetry-breaking [15], [27], [44] substantially reduces

the number of solutions to inspect and plays a key role in

traditional analyses using Alloy. Aluminum [39] limits the

instances to minimal solutions to further ease the under-

standing of the models using instance inspection. Our test

generation techniques are orthogonal to and can be applied

in synergy with symmetry breaking, minimal instances, and

other scenario exploration techniques [33].

Testing constraint programs in general has been addressed

in previous work. For example, a test framework was built for

the constraint language OPL which focuses on using an oracle

model to derive tests that look for differences in behavior

based on conformity properties and provides guidance for fault

localization [30], [31]. Moreover, previous work introduced

a reduction of testing UML models to satisfiability checking

by encoding the model and a property of interest, and using

SAT [45]. Other related efforts have focused on leveraging

a range of UML diagrams (sequence, class, and activity dia-

grams) in conjunction with pre-/post-conditions and invariants

in OCL to develop a few different methodologies for guiding

test input generation, stimulating execution of UML models,

and observing their behavior [12], [13], [41]. Moreover, in the

context of functional programs, e.g., in Haskell, automated

testing is common practice [9].

Mutation testing [11], [21] is a well-studied and active re-

search area [25]. However, in the specific context of declarative

programs, mutation testing is lesser explored [6]. Previous

work in this area has focused largely on mutation of specifica-
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tions (typically for imperative code), where specific techniques

apply mutation operators designed for imperative code but also

applicable to specifications, e.g., applying relational operator

replacement to replace “<” with “>”. Our work on mutation

testing for Alloy is closest in spirit to Srivatanakil et al. [48]

who define mutation operators for CSP specifications written

using FDR2 syntax [2]. Specifically, their process definition

operators focus on specific specification constructs. The key

difference is our support for Alloy – a relational first order

logic with transitive closure. Aichernig and Salas [5] define

specification mutation for OCL and apply it to pre/post-

condition specifications for constraint-based testing. The mu-

tation operators for OCL are a subset of those used commonly

for imperative code, specifically for boolean expression modi-

fication. A generalization and formalization of the foundation

of this work is presented in follow up work by Aichernig and

Jifeng [4] who provide an integration of mutation testing with

the Unifying Theory of Programming [21].

Our focus in this paper is on testing programs written in

Alloy, a declarative language. There is a rich history of using
declarative specifications to test imperative programs [19] with

logical constraints playing an important role in systematic

testing [7], [10], [17], [20], [22], [23], [29], [35], [40], [42].

While a primary role for tests is in bug finding, a number

of recent projects have leveraged tests for automated debug-

ging [16], [32], [34], [54] and program synthesis [14], [28],

[46]. AUnit enables defining such approaches [53] for Alloy.

VII. CONCLUSION

We presented two novel approaches for automated testing

of models written in Alloy – a well-known declarative, first-

order language that is supported by a fully automatic SAT-

based analysis engine. The first approach introduces automated

test generation for Alloy and is embodied by three techniques

that create test suites in the traditional spirit of black-box,

white-box, and mutation-based testing. The second approach

introduces mutation testing for Alloy and defines how to

create mutants of Alloy models, compute mutation testing

results, and check for equivalent mutants using SAT. The two

approaches build on the basis defined previously by our AUnit

framework, which introduced the idea of unit testing for Alloy

in the spirit of unit testing for imperative languages. While test

generation and mutation testing are heavily studied problems

with many solutions in the context of imperative languages, the

key novelty of our work is to introduce and address these prob-

lems for the declarative programming paradigm, specifically

for the Alloy language. Experimental results using several

Alloy subjects, including those with real faults, demonstrate

the efficacy of our framework.

We believe our work introduces a novel, yet conceptually

familiar, effective way to validate the quality of Alloy models.

Indeed, testing remains the most widely used methodology

for validating quality of programs in imperative languages.

We hope a well-founded testing methodology for models –

written in declarative languages – can be equally useful for

finding faults in models. We plan to develop our approach for

other declarative languages and analysis tools in future work.
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APPENDIX

The following partial Alloy model is to be completed with

respect to the instructions given as comments in the model:

module list

sig List {
header: set Node

}

sig Node {
link: set Node,
elem: set Int

}

fact CardinalityConstraints {
// each list has at most one header node

/* your code goes here */

// each node has at most one link

/* your code goes here */

// each node has exactly one elem

/* your code goes here */
}

pred Loop(This: List) {
// <This> is a valid loop-list

/* your code goes here */
}

pred Sorted(This: List) {
// <This> has elements in sorted order (‘<=’)

/* your code goes here */
}

pred RepOk(This: List) { // class invariant for List
Loop[This]
Sorted[This]

}

pred Count(This: List, x: Int, result: Int) {
// count correctly returns the number of occurences
// of <x> in <This>
// <result> reprsents the return value of count

RepOk[This] // assume This is a valid list

/* your code goes here */
}

abstract sig Boolean {}

one sig True, False extends Boolean {}

pred Contains(This: List, x: Int, result: Boolean) {
// contains returns true if and only if <x> is in <This>
// <result> represents the return value of contains

RepOk[This] // assume This is a valid list

/* your code goes here */
}
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