
Abstract Alloy Instances

Jan Oliver Ringert1 and Allison Sullivan2(B)

1 Bauhaus-University Weimar, Weimar, Germany
2 The University of Texas at Arlington, Arlington, TX, USA

allison.sullivan@uta.edu

Abstract. Alloy is a textual modeling language for structures and
behaviors of software designs. One of the reasons for Alloy to become
a popular light-weight formal method is its support for automated,
bounded analyses, which is provided through the Analyzer toolset.
The Analyzer provides the means to compute, visualize, and browse
instances that either satisfy a model or violate an assertion. Under-
standing instances for the given analysis often requires much effort and
there is no guarantee on the order or level of information of computed
instances. To help address this, we introduce the concept of abstract
Alloy instances, which abstract information common to all instances,
while preserving information specific to the analysis. Our abstraction is
based on introducing lower and upper bounds for elements that may
appear in Alloy’s instances. We evaluate computation times and sizes of
abstract instances on a set of benchmark Alloy models.

Keywords: Alloy analyzer · Instances · Relational logic · Abstraction

1 Introduction

Alloy [8–10] is a textual modeling language based on relational first-order logic.
Alloy models declaratively express structures and behaviors of software designs.
The Alloy Analyzer [2] provides various analyses for finding instances of Alloy
models. This analysis is automated due to the use of a bounded scope and an
automated translations to SAT solvers, making Alloy a popular light-weight
formal method [10]. Alloy has been used to validate software designs [16,31],
to formalize class diagrams [4,5,12], to test and debug code [6,13], to repair
program states [21,30] and to provide security analysis [1,29].

Simplified, Alloy models consist of signatures, fields, and constraints. Intu-
itively, a signature introduces a set of atoms, a field relates atoms to other atoms,
and constraints define valid configurations – instances – of atoms and their rela-
tions. Most Alloy analyses produce a very large numbers of instances, which
can number in the hundreds or even thousands, even after automatically filter-
ing symmetric instances [28]. These instances are presented to the user in the
order the underlying SAT solver discovers them, which is effectively random. In
the Analyzer, users can iterate over instances one by one, visually inspecting

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Chechik et al. (Eds.): FM 2023, LNCS 14000, pp. 364–382, 2023.
https://doi.org/10.1007/978-3-031-27481-7_21

Abstract Alloy Instances 365

them for correctness. However, given the size of instances and Alloy’s unordered
enumeration, this inspection process places a high burden on the user [7,14].
Therefore, recent work has looked to address this problem by trying to compute
more informative, e.g., minimal, instances [15], analyzing “why” and “why not”
questions for elements of instances [14], or providing a lightweight order to the
enumeration by allowing the user to preserve or change elements of instances [23].
However, all of these approaches deal with valid, complete Alloy instances. Unfor-
tunately, not everything present in an instance is there to satisfy the explicitly
executed commands. Alloy instances must also satisfy global properties and no
prior work separates the different origins of constraints that influence the shape
of an instance.

To address this, we introduce the concept of abstract Alloy instances, a gener-
alization over concrete Alloy instances that abstract away information common
to all instances, while preserving information specific to a concrete outcome of
the analysis. Our abstraction is based on introducing lower and upper bounds1
for Alloy’s signatures and fields. The lower bound represents atoms and rela-
tions that must be contained in every Alloy instance that concretizes the abstract
instance, while the upper bound captures possible additions of atoms and tuples.
An abstract instance either represents multiple concrete Alloy instances – those
in the upper and lower bounds – or the bounds coincide and the abstract instance
is a concrete instance. Our abstraction of Alloy instances is specific to the anal-
ysis run by the user, e.g., an Alloy run command sampling specific instances or
a check command looking for counterexamples of an assertion.

In this paper, we make the following contributions:

Abstract Instances We introduce abstract instances for Alloy that define lower
and upper bounds that preserve information in the instance related to satis-
fying explicitly executed formulas of a command.

Computing Maximal Abstract Instances We present an algorithm to
generate a maximal abstract Alloy instance, which is an abstract instance
whose bounds maximize the number of concrete instances represented by the
abstract instance.

Evaluation We evaluate different performance aspects related to generating
abstract instances over a broad benchmark of Alloy models. Our results high-
light that there is minor overhead to producing abstract instances, but these
abstract instances successfully reduce the information presented to the user.

Open Source Our open-source implementation and evaluation materials are
available on GitHub [20] and Zenodo [19].

2 Example

To introduce the basics of Alloy and computed instances, consider the model of
a gradebook shown in Fig. 1. The model describes students, professors, classes,
and assignments as well as their relations. Alloy’s main structural elements are
1 The Alloy Analyzer requires analysis scopes as cardinalities for signatures. Our

bounds are refinements of the bounds induced by those scopes, see Sect. 4.

366 J. O. Ringert and A. Sullivan

Fig. 1. Alloy model Gradebook from [15]

Fig. 2. Two concrete counterexamples (a) and (c) for the check command in Fig. 1 and
an abstract instance (b) representing both (a) and (c)

signatures, e.g., signatures Student and Professor, which both inherit from sig-
nature Person (Fig. 1, ll. 1–2). Other signatures in the model are Class and
Assignment (ll. 3–4). These signatures declare fields to express relations between
the instances of signatures (called atoms). As an example, classes have one pro-
fessor as instructor and a set of students as assistants (l. 3). Assignments are
associated with a set of classes and assigned to at least one (some) student (l. 4).
A fact restricts all assignments to be associated with exactly one class (l. 5).

The engineers developing the Alloy model want to make sure that no student
grades their own assignment. They express a grading policy for persons p and
assignments a in a predicate (ll. 6–8) that allows p to grade a iff a belongs to a
class where p is an assistant (l. 7) or an instructor (l. 8). An assertion (ll. 10–
12) quantifies over all persons p and all assignments a and asserts that if p can
grade assignment a according to the policy expressed in the predicate then the
assignment is not assigned to be solved by p.

The Alloy Analyzer allows the engineers to check the validity of the assertion
in a bounded scope (l. 14, for up to 3 atoms of each of the signatures). It turns

Abstract Alloy Instances 367

out that the assertion is not valid and a counterexample is presented to the
engineers. The counterexample in Fig. 2(a) is the one of the instances the Alloy
Analyzer computes. It shows three assignments, two classes, two students, a
professor, and their relations, e.g., Prof0 is the professor of both classes. It is not
easy for the engineers to spot the violation of their assertion, as the engineers
need to try to determine which assignment(s) and grader(s) are relevant to the
violation.

An abstract instance for Fig. 2(a) is shown in Fig. 2(b). Assignment Asgmt2 is
assigned to student Stud1 who is also assistant in class Class0 that the assignment
is associated with, i.e., this student can mark their own assignment. Note that
the abstract instance is much smaller than the concrete instance and focuses
on the reason the assertion is violated, while abstracting away some elements,
e.g., the information that Prof0 is the instructor of the class or that there are
multiple assignments not relevant to the violation. The abstract instance is not
necessarily a complete Alloy instance, but it can be extended to many concrete
instances by adding atoms and their relations. For instance, Fig. 2(c) shows a
different concrete instance that extends the abstract instance.

3 Preliminaries

3.1 Alloy Semantics

We now sketch the semantics of Alloy models as sets of relations. Detailed defi-
nitions can be obtained by the descriptions of language elements in [3,9].

The semantics of Alloy models is defined by a set R of n-ary relations r ∈ R.
Intuitively each signature defines a unary relation and each field defines a relation
of the arity of the field plus one. The domain of an n-ary relation is a subset
of n-ary tuples over a universe UNIV of atoms, i.e., dom(r) ⊆ UNIVn. As an
example, the domain of the relation for signature Student (Fig. 1, l. 2) is a set of
atoms and the relation for field instructor (Fig. 1, l. 3) is a set of pairs of atoms
from relations of signatures Class and Professor. The set R of all relations of an
Alloy model is defined by the declared signatures, fields, and built-in signatures,
e.g., built-in signature Int, whose atoms represent the in-scope integers.

Multiplicities of signatures and fields constrain the valuations of relations,
e.g., the multiplicity one constrains the relation for field instructor (Fig. 1, l. 3)
to include exactly one pair of Class and Professor atoms for every Class atom.
The semantics of facts, predicates, assertions, and expressions are constraints
over the tuples in relations R of the model. As an example, a fact in Fig. 1, l. 5
requires that for every atom in the relation for signature Assignment the relation
for field associated_with contains exactly one tuple.

3.2 Alloy Analyses

The Alloy Analyzer enables automated analyses of Alloy models via run and
check commands. Run commands compute instances satisfying a predicate and
check commands provide instances violating assertions, i.e., counterexamples.

368 J. O. Ringert and A. Sullivan

The analysis of Alloy models by the Alloy Analyzer requires bounds B for
relations R. Every r ∈ R has a lower bound LBB(r) ⊆ dom(r) and an upper
bound UBB(r) ⊆ dom(r) with LBB(r) ⊆ UBB(r) (see [28]). Bounds are derived
from user-defined scopes that determine the maximal numbers of atoms in rela-
tions for all signatures of the model. As an example, the check command in
Fig. 1, l. 14 defines scope 3 setting |UBB(r)| = 3 for all relations r of signatures,
e.g., the relation for signature Student.

We distinguish between two constraints M and C on the relations R of an
Alloy model. M is the constraint defined by the semantics of the model (sig-
natures and facts) and C is the constraint defined by a command (predicate or
assertion). As an example, for the model in Fig. 1, the constraint M expresses the
multiplicities and facts as sketched in Sect. 3.1 and the constraint C expresses
the assertion in Fig. 1, l. 10–12. Thus, we define an Alloy instance as:

Definition 1 (Alloy instance). An instance of an Alloy model is a valuation
I of relations r ∈ R within bounds B that satisfies the constraints M and C
denoted by ∀r ∈ R : LBB(r) ⊆ I(r) ⊆ UBB(r) and I |= M ∧ C.

Note that Definition 1 does not distinguish between run and check commands,
as internally Alloy translates check commands to run commands by negating the
assertion. The Alloy instance is then also called a counterexample.

4 Abstract Alloy Instances

To introduce abstract Alloy instances, we first define a partial order on bounds
B, i.e., pairs of lower and upper bounds for relations R.

Definition 2 (Partial order on bounds). Two bounds B and B′ over rela-
tions R are in a partial order relation � where B′ � B iff ∀r ∈ R : LBB(r) ⊆
LBB′(r) ∧ UBB′(r) ⊆ UBB(r).

The relation � is reflexive, transitive, and antisymmetric (because subset
inclusion ⊆ is a partial order). Intuitively, bound B is greater or equal to bound
B′ if B contains all bounds of B′, i.e., all lower bounds in B are smaller and all
upper bounds are larger.

As an illustration, consider increasing the scope in Fig. 1, l. 14 from 3 to
5. The bounds have identical lower bounds (empty), but the upper bounds are
equal or larger for when increasing scope 3 to scope 5. Typically, bounds for
lower scopes are smaller with respect to � than those obtained for larger scopes.
We may write I � B for instances I where we set LBI(r) = I(r) = UBI(r) for
all r ∈ R. Of note, our partial order on bounds is quite different from the partial
order on instances defined for Aluminum [15]. First, their order does not include
upper bounds, and second, their order is the reverse of ours for lower bounds.

Next, we define abstract instances for Alloy commands.

Definition 3 (Abstract Instance). An abstract instance A for model M ,
command C, and bounds B are bounds A � B s.t. all valuations I in A that
satisfy M also satisfy C, formally ∀Is.t.I � A : (I |= M) ⇒ (I |= C).

Abstract Alloy Instances 369

Fig. 3. Alloy models demonstrating interesting properties of abstract instances

It is important to define I in Definition 3 again as valuations (as before in
Definition 1) rather than Alloy instances. Alloy instances would need to satisfy
both M and C, but for abstract instances the satisfaction of the command
constraints C is only relevant if the model constraints M are satisfied.

By design, abstract instances abstract away the common constraints M of the
model and preserve the reasons for satisfying commands C, i.e., all valid exten-
sions (those satisfying the model) of the lower bounds up to the upper bounds
must satisfy the analyzed command. As an example, consider the abstract
instance in Fig. 2(b) where the lower bound consists of the displayed atoms
and relations and the upper bound is unbounded (B). Any valid extension of
the lower bound, e.g., Fig. 2(a), violates the assertion, as a student grades their
own assignment. We are interested in maximal abstract instance, i.e., an abstract
instance A that is maximal wrt. � (there is no abstract instance A′ with A′ �= A
and A � A′). A maximal abstract instance represents a maximal number of Alloy
instances.

Torlak and Jackson [28] define partial instances for KodKod, which is the tool
used by the Analyzer to translate the Alloy model into a boolean satisfiability
problem, as the lower bounds of the relational problem. The purpose in [28] is to
assist the solver. In contrast, our purpose is to provide information to engineers.
Since our abstract instances contain lower bounds, they have a flavor of partial
instances. However, the lower bounds of an abstract instance A may be smaller
than KodKod’s partial instances as M ensures that all represented instances I
include KodKod’s partial instances. The lower bounds of A may also be larger
than KodKod’s partial instances, if required for instances I to satisfy C.

4.1 Properties of Abstract Instances

We now present six general properties of abstract instances.
First, every concrete instance I from Definition 1 interpreted as bounds is

also an abstract instance (again setting LBI(r) = I(r) = UBI(r)) because
I |= M ∧ C. We say that an abstract instance A represents concrete instance I
iff I � A. Every concrete instance seen as an abstract instance only represents
itself, i.e., for all concrete instances I and I ′ we have I ′ � I ⇒ I ′ = I (by
unfolding the definitions). We are interested in generating abstract instances
that represent many concrete instances.

Second, some maximal abstract instances A are concrete instances, i.e.,
reducing any lower or increasing any upper bound of A would allow for valua-
tions I � A where I |= M but I �|= C. An example is shown in Fig. 3(a) where
the instance consisting of one Professor atom is a maximal abstract instance.

370 J. O. Ringert and A. Sullivan

Third, for a model M , command C, and bounds B, we typically have multi-
ple maximal abstract instances (incomparable wrt. the partial order �). As an
example, the run command of the model in Fig. 3(b) requires that instances
contain at least one atom of type Person. We denote by s and p the rela-
tions defined by signatures Student and Professor. The abstract instances A
(at least one student) and A′ (at least one professor) where |LBA(s)| = 1,
LBA′(s) = ∅, LBA(p) = ∅, |LBA′(p)| = 1, UBA(s) = UBA′(s) = UBB(s), and
UBA(p) = UBA′(p) = UBB(p) are both maximal abstract instances (reducing
any lower bound would not ensure the existence of a Person atom and upper
bounds are already maximal).2

Fourth, concrete instances may be represented by multiple maximal abstract
instances. As an example, consider the model shown in Fig. 3(b) and the concrete
instance consisting of a Student and a Professor atom. This concrete instance
is represented by both of the incomparable abstract instances A (at least one
student) and A′ (at least one professor). This observation means that maximal
abstract instances do not partition the set of instances they represent. There are
however always partitions of the set of concrete instances by abstract instances,
e.g., the trivial one where we treat concrete instances as abstract ones.

Fifth, from Definition 3, we can see that increasing a lower bound or decreas-
ing an upper bound of an abstract instance A (up to upper bounds in B) pre-
serves the abstract instance properties (as the set of valuations I � A becomes
smaller). In contrast, decreasing a lower bound or increasing an upper bound
may allow for new valuations I ′ � A that satisfy M but not C.

Finally, some maximal abstract instances have trivial bounds, e.g., when M
implies C the requirement I |= M ⇒ I |= C from Definition 3 becomes true.
Then all lower bounds of maximal abstract instances A are empty (∀r ∈ R :
LBA(r) = ∅) and all upper bounds correspond to upper bounds in B (∀r ∈
R : UBA(r) = UBB(r)). A common example is where an Alloy user executes an
empty run command to browse arbitrary instances. In this case, our abstraction,
which focuses on the analysis of the command, has nothing to preserve.

5 Computing Abstract Alloy Instances

We have seen in Sect. 4.1 that abstract instances are relatively easy to obtain by
computing concrete instances and translating them into bounds. However, these
abstract instances might not be very informative, as they represent a single
concrete instance. We thus aim to compute maximal abstract instances.

Our algorithm for computing a maximal abstract instance is illustrated in
Algorithm 1. First, a concrete instance I satisfying the model and command
constraints M ∧ C is computed by Alloy’s regular solver shown as a call to
solve(M∧C,B). From this concrete instance we start an iteration that increases
the bounds A (initialized as A ← I) in every iteration of the while loop, i.e.,
A′ � A. This iteration is necessary as upper and lower bounds may depend on
each other. The iteration terminates as lower bounds may only shrink to the
2 We oversimplify the case of inheritance and relations for illustrative purposes, see

our implementation in Sect. 5.1 for a more thorough handling.

Abstract Alloy Instances 371

Algorithm 1. Computation of an abstract instance for model M , command C
and bounds B
1: I ← solve(M ∧ C,B)
2: A ← I
3: A′ ← ∅
4: while A �= A′ do
5: A′ ← A
6: LBA ← minimize(LBA′) down to ∅
7: UBA ← maximize(UBA′) up to UBB

8: end while
9: return A

Algorithm 2. Computation of the check used for minimization in Algorithm 1 for
cand ⊂ LBA′ with bounds A′ andB, modelM , and commandC from Algorithm 1
1: M ′ ← M ∪ sigs4Bounds(cand,UBA′)
2: bounds ← expr4Bounds(cand,UBA′)
3: return (solve(M ′ ∧ bounds ∧ ¬C,B) == UNSAT)

empty set (∅) and upper bounds may grow at most up to B. The algorithm then
returns a maximal abstract instance A (by construction of the bounds).

To minimize and maximize bounds we use Delta Debugging [32]. Delta
Debugging computes minimal subsets of a set that satisfy a check criterion.
We can easily convert our bounds to sets (e.g.,

⋃
r∈R LBA′(r) is a set of atoms

and tuples) and back by tracking Alloy’s type information.
We show our implementation of check(cand) in Algorithm 2. A candidate cand

⊂ ⋃
r∈R LBA′(r) is valid if the abstract instance criterion from Definition 3 is sat-

isfied, i.e., for all I ′ within the bounds of the abstract instance I ′ |= M ⇒ I ′ |= C.
In Algorithm 2 the lower bounds we use for valuations I ′ are cand and the upper
bounds are UBA′ (for maximizing UBA′ check uses cand and LBA′). We encode
these as the constraint bounds (see Sect. 5.1). Finally, to evaluate the abstract
instance criterion, we invoke the solver and convert the universal quantification
over valuations I ′ into an existential one that satisfies M and violates C.

5.1 Encoding of Bounds in Alloy

Ideally, we would like to pass bounds A instead of B to Alloy’s solver Kod-
Kod [28]. However, the bounds used by KodKod are different from the ones
indicated in Definition 1, Definition 2, and Definition 3, e.g., KodKod does not
support inheritance and thus additional relations may be created in the trans-
lation to KodKod. Since our prototype implementation stays on the abstraction
level of Alloy, we encode bounds as additional signatures (sigs4Bounds) and con-
straints (expr4Bounds).

Method sigs4Bounds creates signatures with multiplicity lone extending the
primary signatures3 of the model to represent atoms, e.g., signatures created for
3 Alloy distinguishes between primary and subset signatures where atoms of subset

signatures always also belong to primary signatures.

372 J. O. Ringert and A. Sullivan

Fig. 4. Excerpt of encoding of bounds from Fig. 2 via signatures and constraints

the atoms shown in Fig. 2(a) are declared in Fig. 4, ll. 1–2. Method expr4Bounds
then uses this representation of atoms to express lower bounds by requiring the
existence of the atoms and tuples, e.g., for the lower bound in Fig 2 (b) see
Fig. 4, l. 4. Similarly, tuples are required by lower bounds, e.g., in Fig. 4, l. 5.
Whereas the constraints of lower bounds are local for individual elements, upper
bounds are global in the sense that we must constrain all atoms of a signature,
e.g., Fig. 4, l. 7, and all tuples of a relation at once, e.g., Fig. 4, l. 8. The upper
bound constraints in Fig. 4, ll. 7–8 are an excerpt of upper bounds initialized
from the instance in Fig. 2(a).

The use of a generic minimizer in Algorithm 1, which is unaware of dependen-
cies between tuples and atoms, may lead to cases where a tuple is present in the
lower or upper bounds when one of its atoms is not. In both cases, expr4Bounds
does not generate a constraint for the tuple, i.e., the constraint for the lower
bound is weaker and might fail (the larger cand set with the missing atom will
then be searched) and the constraint for the upper bound might be stronger and
may succeed (the larger set with the additional atom will then also be checked).

Note that our implementation uses APIs of the Alloy Analyzer and does not
explicitly create the syntax shown in Fig. 4. This has two advantages: (1) we do
not need to disambiguate fields with same names and (2) we can also constrain
signatures marked as private, e.g., the signature Ord in Alloy’s ordering module.

5.2 Running Time Complexity

We estimate the running time complexity of the algorithm in terms of Alloy’s
solver calls by Algorithm 1. Minimization and maximization with Delta Debug-
ging has a running time in O(N2). The while loop in Algorithm 1 leads to an
overall time complexity in O(N4) (worst case where every iteration adds/re-
moves only one element). In Algorithm 1, l. 6 N = |LBA′ | with |LBA′ | ≤ |I|.
In Algorithm 1, l. 7 N = |UBA′ | with |UBA′ | ≤ |UBB |. In both cases,
N ≤ ∑

r∈R |dom(R)|. Looking at the structure of Alloy models with signatures
sigs, fields fields and scope maxScope, we have N ∈ O(maxScope · |sigs| +
|fields|·maxScopemaxArity(fields)). Note that the size of I is often much smaller,
but this is not the case for |UBB |.

5.3 Different Upper Bound Kinds

We have defined abstract instances in Definition 3 without any restriction on the
shape of bounds. The running time analysis in Sect. 5.2 shows that restrictions

Abstract Alloy Instances 373

Fig. 5. Abstract instance visualized on top of a concrete instance (UB is unbounded)

on the kind of upper bounds we compute may improve running times. We have
implemented four kinds of upper bounds and briefly describe these here.

Exact. Exact upper bounds are the most natural variant used in Sect. 5. Every
atom and every tuple have to be considered when maximizing the upper bound
of an abstract instance. The number of elements to find a maximal subset for is
in O(maxScope · |sigs| + |fields| · maxScopemaxArity).

Instance or None. The upper bound for each signature and field r ∈ R is as
in the concrete instance UBA(r) = UBI(r) or unrestricted UBA(r) = UBB(r).
The number of elements to find a maximal subset for is in O(|sigs| + |fields|).
Instance. The upper bound is always the instance. There is no call to maximize
in Algorithm 1, l. 7 and UBA remains as initialized from UBI .

None. We do not consider any restriction of the upper bound. There is no call
to maximize in Algorithm 1, l. 7 and UBA is instead treated as UBB .

The latter two bound kinds reduce the overall running time complexity from
O(N4) to O(N2). For the first three kinds an abstract instance always exists
(in the worst case it only represents I); however, kind None is incomplete, i.e.,
some concrete instances require upper bounds (see Fig. 3(a)).

5.4 Implementation and Visualization

We have implemented our work as an extension to the latest stable release of the
Analyzer, version 6.0.0 [2] (our implementation is available from [20]). Impor-
tantly, since we extend the main IDE for Alloy, users can maintain their cur-
rent workflow while gradually exploring the new functionality. Users can access
abstract instances during the standard enumeration process, which occurs in the
VizGUI. When viewing a specific instance, the user is able to select the “Abs”
button which will update the active display to present the associated abstract
instance. The lower bound of the abstract instance is displayed visually in the
main panel, while the upper bound is conveyed textually below.

374 J. O. Ringert and A. Sullivan

Fig. 6. Abstract instance visual-
ized independently of any concrete
instance (UB is unbounded)

Users are given two display options. First,
the “Over Instance” view will highlight the
lower bound of the abstract instance, with
any excluded portion of the Alloy instance
grayed out. As an example, for the Grade-
book model from Fig. 1, Fig. 5 shows a possi-
ble instance using the “Over Instance” visu-
alization. Second, the “Independent” view
which will visualize just the lower bound of
the abstract instance. As an example, Fig. 6
shows the same instance as that in Fig. 5
but with the “Independent” view. In addition,
users can also select which of the four upper
bound kinds from Sect. 5.3 to use. The user
can switch back to the original instance using
the “Orig” button.

6 Evaluation

To evaluate abstract instances, we use a collection of 78 benchmark Alloy models.
We executed all experiments on Ubuntu 22.04 LTS (64 Bit) with an Intel Core
i7-7700 K 4.20 GHz processor and 32 GB RAM. We use Alloy’s default options
and selected MiniSatJNI as SAT solver.

We address the following research questions, where by abstract instance we
always mean maximal abstract instance:

– RQ1: What is the time overhead of generating an abstract instance?
– RQ2: How do the sizes of abstract and concrete instances compare?
– RQ3: As concrete instances are enumerated, what is the diversity of the

underlying abstract instance?
– RQ4: What is the time/size/diversity impact of the upper bound kind?

Table 1. Subjects

Subject #M Avg.S Avg.R #C Avg.C
ARepair 33 4.27 2.91 36 1.10
Book 28 4.46 3.20 34 1.21
Example 17 6.71 7.76 41 2.41

Set Up. To evaluate abstract ins-
tances, we rely on meaningful com-
mands. Therefore, we focus on
two collections of models used to
illustrate how Alloy works: mod-
els from the Alloy textbook [9]
(Book) and models included as
examples in the official Analyzer release (Examples). In addition, we include
models used to evaluate recent automated repair work for Alloy (ARepair)
whose commands execute faulty portions of the model. For each model, we con-
sider every command present; however, we filter out commands that are: (1)
empty (“run {}”), which only execute the facts of the model, (2) commands that
produce no instances and (3) commands that use temporal logic, which is new

Abstract Alloy Instances 375

to Alloy 6 and not currently supported by our implementation. After this filter-
ing, we are left with 28 Book models, 17 Example models, and 33 ARepair
models. For each collection of models, Table 1 gives the following information to
convey the size and number of models in the benchmarks: Column #M shows
the number of models, #Avg_S is the average number of signatures per model,
#Avg_R is the average number of relations per model, #C is the total number
of commands, and #Avg_C is the average number of commands per model. For
each command, we enumerate up to the first 10 instances, with an enumeration
timeout of 10min. For research questions 1–3, we use Exact upper bounds as a
default.

6.1 RQ1: Overhead

Abstract instances are generated from an existing concrete instance that has been
enumerated for a command. To explore the overhead of this process, Fig. 7(a)
depicts a boxplot that shows the distribution of the ratio between the time it
takes to generate the first abstract instance compared to the time to generate the
first concrete instance. A ratio larger than 1 means the abstract instance took
longer to produce than the paired concrete instance. We consider only the time to
the first instance because the Analyzer uses incremental SAT solvers; therefore,
the time to produce the first instance includes all the novel effort to resolve the
executed constraints, while future instances are often quickly produced due to
the ability to reuse previous work. There are 38, 33 and 34 abstract-concrete
instances pairs in the boxplot for ARepair, Book and Example respectively.
Example excludes two commands which timed out generating the first instance.
The first quartile to third quartile ratios range from 2.14 to 4.5 for ARepair,
from 1.84 to 11.81 for Book and from 5.35 to 62.10 for Example.

These results indicate that abstract instances frequently take longer to pro-
duce compared to their paired concrete instance. However, this does not mean
abstract instances have a prohibitive overhead. In particular, finding concrete
instances is quick: all concrete instances are produced in less than .5 s. In com-
parison, 61 of the abstract instances take less than 2 s to produce, while 34
abstract instances take between 2 s and 10 s to produce, which is a slight over-
head but not unreasonable. However, 17 abstract instance take longer than 10 s to
produce, including 5 abstract instances that take longer than one minute. These
5 abstract instances all use a larger scope than the default scope (3) and include
the “ordering” module. In fact, across all three data sets, all but two outliers
capture abstract instances that come from models that uses the “ordering” mod-
ule. While ARepair contains 1 abstract instance that includes the “ordering”
module, Book has 10 and Example has 30, which directly translates into the
increasingly larger ratios observed in Fig. 7(a).

On average, abstract instances have a minor overhead to produce; however,
if the “ordering” module is present, the time overhead quickly increases. The
“ordering” module bloats the time to generate an abstract instance because the
module increases the size of the upper bound since it places an ordering on the
atoms of a signature and all possible orders must be considered.

376 J. O. Ringert and A. Sullivan

ARepair Book Examples

100

101

102

103

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
T
im

e

ARepair Book Examples

0

0.5

1

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
Si
ze

ARepair Book Examples

0.1

0.2

0.3

0.4

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
D
iv
er
si
ty

(a) (b) (c)

Fig. 7. Comparison of abstract instance to concrete instance performance

6.2 RQ2: Size Comparison

Given that abstract instances are meant to refine concrete instances, we expect
that abstract instances are, on average, smaller than concrete instances. To
explore if this holds, Fig. 7(b) depicts a boxplot showing the distribution of
size ratios, which is calculated by taking the size of the abstract instance and
dividing it by the size of the corresponding concrete instance used to produce
the abstract instance. We define the size of a concrete instance as the number
of its atoms and tuples and we define the size of an abstract instance as the
number of atoms and tuples in the lower bound plus the number of relations
constrained in by the upper bound. A ratio of less than 1 means the abstract
instance is smaller than the paired concrete instance. There are 339, 253, and
282 abstract-instance pairs in the boxplot for ARepair, Book and Examples
respectively. The first quartile to third quartile ratios range from 0.31 to 0.58
for ARepair, from 0.31 to 0.67 for Book and from 0.17 to 0.53 for Example.

The results highlight that on average the abstract instance is smaller than
the concrete instance, and often the abstract instance reduces the size by at
least half. Rarely, the abstract instance ends up the same size or larger than the
concrete instance. This occurs just 6, 6, and 1 times for ARepair, Book and
Examples respectively. In the opposite direction, for 30 ARepair instances, the
abstract instance produced is an empty instance. This is expected as all of these
instances are associated with the model “student16” that is under-constrained
due to the student failure to write anything for the predicates. As a result,
when the faulty predicates are run, only the facts of the model are enforced.
The results also highlight that while models that use the “ordering” module will
have longer abstract instance generation times, these models do not consistently
produce larger abstract instances, as Example models has the smallest quartile
1 to quartile 3 range despite having the most models that use “ordering.”

We find that the abstract instance noticeably reduce the size of the con-
crete instance, highlighting that commonly half or more of the information
in an instance is there regardless of the explicitly executed constraints of the
command.

Abstract Alloy Instances 377

6.3 RQ3: Diversity

To gain insight into how many different abstract instances the user will
encounter, Fig. 7(c) depicts a boxplot showing the distribution of diversity ratios,
which is calculated by taking the number of unique abstract instance and divid-
ing it by the number of concrete instances for each command. We include only
those commands that were able to produce 10 concrete instances. A ratio of
less than one means there were fewer unique abstract instances than concrete
instances, with a ratio if 0.1 meaning all 10 concrete instances reduced to the
same abstract instance. There are 33, 21 and 25 commands in the boxplot for
ARepair, Book and Examples respectively. The first quartile to third quartile
ratios range from 0.1 to 0.2 ARepair, from 0.2 to 0.3 Book and from 0.1 to 0.2
Example. The median is equivalent to the 1st quartile for all data sets.

The results demonstrate that ARepair and Example models frequently
produce only 1 or 2 abstract instances for the first 10 instances enumerated.
For both data sets, 17 of their commands produce a single abstract instance. In
contrast, Book models have a little bit more diversity, with only 4 commands
producing a single abstract instance. However, even for Book, no command
produces more than 4 unique abstract instances. Since a user is likely to inspect
the first few instances, but maybe not too many more, our results indicate that
the user is often looking at instances that all satisfy the explicitly executed
commands in the exact same way. Therefore, as future work, we plan to explore
how to directly enumerate unique abstract instances, which will ensure users are
able to quickly view diverse ways the command can be satisfied.

6.4 RQ4: Impact of Upper Bound Kind

As outlined in Sect. 5.3, abstract instances can be calculated with four differ-
ent upper bounds. While Exact is the default, Fig. 8 compares the performance
across all four upper bound kinds. In Fig. 8, E represents Exact, I represents
Instance, IoN represents Instance or None and N represents None. Across the
performance metrics, None consistently represents fewer data points as None
is incomplete for 41 of the commands in the evaluation. For the other three
bounds, there is a minor difference in the number of data points, as some of the
more time expensive upper bound kinds occasionally timeout while enumerating
instances.

Figure 8(a) compares the overhead of each upper bound kind by depicting the
ratio between the time to generate the abstract instance and generate the con-
crete instance. We again look at the time to produce the first instance. There are
103, 105, 105 and 64 abstract-concrete pairs in the boxplot for Exact, Instance,
Instance or None and None respectively. The results in Fig. 8(a) highlights that
on average, Exact is the most expensive upper bound and Instance is the fastest
upper bound, both of which is expected.

378 J. O. Ringert and A. Sullivan

E I IoN N
10−1

100

101

102

103

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
T
im

e

E I IoN N

0

0.5

1

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
Si
ze

E I IoN N

0.2

0.4

R
at
io

A
bs
tr
ac
t/C

on
cr
et
e
D
iv
er
si
ty

(a) (b) (c)

Fig. 8. Comparison of performance for different upper bounds

Figure 8(b) compares the size of the abstract instances produced by the dif-
ferent upper bound kinds. We again present size as a ratio of the size of the
abstract instance divided by the size of the corresponding concrete instance.
There are 871, 913, 901, 570 abstract-concrete pairs in the boxplot for Exact,
Instance, Instance or None and None respectively. For Exact, Instance or None
and None, the size performance is very similar. In contrast, Instance consis-
tently produces smaller abstract instances than all other three upper bound
kinds. While the other three produce just 30 empty abstract instances, all for
the “student16” submission, Instance produces 210 abstract instances without
lower bounds. This translates directly into the observed performance difference
in size.

Figure 8(c) compares the diversity of generated abstract instances produced
by the different upper bound kids. We again present diversity as a ratio of the
number of unique abstract instances divided by the number of unique concrete
instances per command that do enumerate 10 concrete instances. There are 77,
86, 83 and 54 commands in the boxplot for Exact, Instance, Instance or None
and None respectively. As Fig. 8(c) shows, the different upper bound kinds have
very similar performance in terms of diversity. Exact upper bounds does produce
slightly more abstract instances on average across the first 10 instance, with all
other upper bounds having a median of 0.1, meaning only one unique abstract
instance, while Exact ’s median is 0.2.

6.5 Threats to Validity

There are two main threats to validity for our results. First, we selected our
benchmark models to eliminate the likelihood of encountering trivial commands.
Therefore, our results may not generalize to other Alloy models which may use
different operators and signature constraints than those that appear in our eval-
uation models. Second, our implementation may have bugs. To mitigate this
threat we have used existing components where possible, e.g., Delta Debug-
ging [32] and Alloy’s APIs and solver (see Sect. 5.1). In addition, we have added

Abstract Alloy Instances 379

assertions and ran our algorithms on all available models. Before Algorithm 1,
l. 4 we check whether solve((M ∪ sigs4Bounds(A)) ∧ expr4Bounds(A) ∧ C,B) is
satisfiable (otherwise expr4Bounds is incorrect as I must be a solution). In Algo-
rithm 2 we check that solve(M ′ ∧ bounds ∧ C,B) is satisfiable, i.e., that there
are instances represented by the candidate.

7 Related Work

Explaining Alloy Instances. Our motivation for developing abstract
instances is to help users understand why a given instance was generated by the
Analyzer for an executed command. There have been two notable efforts related
to helping explain Alloy instances. First, Amalgam is an extension to the Ana-
lyzer, which uses provenance chains to inform the user why a specific tuple does
or does not appear in the scenario [14]. Unlike abstract instances, Amalgam’s
provenance chain includes the facts of the model and thus it is possible for the
provenance chain of a tuple to never reference the explicitly invoked formulas of
the command. Second, recent work [7] explored how presenting novice users with
a combination of instances and non-instances for a command can help the user
understand a modeled constraint. This work uses tailored instances that were
selected for the study and thus does not try to influence an active enumeration.

Instance Enumeration for Alloy. Our technique is closely related to tech-
niques which look to enhance the Analyzer’s instance enumeration process. One
traditional approach is to reduce the number of instances through symmetry
breaking, where the goal is to remove isomorphic instances [11,22]. Beyond sym-
metry breaking, several past projects improve instance enumeration by (1) influ-
encing the order of instances [24,25] and (2) trying to narrow what scenarios are
generated using a specific criteria, e.g., abstract functions [26], minimality [15],
maximality [33], field exhaustiveness [17], and coverage [18,27]. All of these tech-
niques reduce the number of instances that are generated by applying additional
criteria to how any new instance generated must differ from the previous set
of instances. Of these, Aluminium, which enumerates minimal instances, is the
most closely related to our technique. In contrast to abstract instances, Alu-
minium produces complete instances, which can prevent Aluminium from fur-
ther reducing the information presented as there are lower bounds enforced by
the constraints of the model that Aluminum will be required to meet to ensure
the instance satisfies the facts of the model, in addition to the command.

8 Conclusion

This paper introduces the concept of abstract instances for the Alloy modeling
language. These instances serve to remove information in the instance that is not
directly relevant to the executed predicate or assertion invoked by the command.
Our experimental results show that abstract instances can often be produced
with a small overhead but do successfully reduce the information presented to

380 J. O. Ringert and A. Sullivan

the user. In addition, our results reveal that an abstract instances often represent
multiple concrete instances. As future work, we plan to conduct a user study to
evaluate how abstract instances help users understand analysis results, explore
how we can efficiently enumerate unique abstract instances, and extend our
approach to handle Alloy’s new temporal logic extension.

References

1. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J.C., Song, D.: Towards a formal
foundation of web security. In: Proceedings of the 23rd IEEE Computer Security
Foundations Symposium, CSF 2010, Edinburgh, United Kingdom, 17–19 July 2010,
pp. 290–304. IEEE Computer Society (2010). https://doi.org/10.1109/CSF.2010.
27

2. Alloy: Alloy Tools GitHub. https://github.com/AlloyTools (2022). Accessed 5 2022
3. Alloy 6 Language Reference. https://alloytools.org/spec.html (2022). Accessed 8

2022
4. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of model transfor-

mation from UML to alloy. Softw. Syst. Model. 9(1), 69–86 (2010). https://doi.
org/10.1007/s10270-008-0110-3

5. Cunha, A., Garis, A., Riesco, D.: Translating between Alloy specifications and
UML class diagrams annotated with OCL. Softw. Syst. Model. 14(1), 5–25 (2013).
https://doi.org/10.1007/s10270-013-0353-5

6. Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid, S.: Korat-API: a frame-
work to enhance Korat to better support testing and reliability techniques. In: SAC
(2018)

7. Dyer, T., Nelson, T., Fisler, K., Krishnamurthi, S.: Applying cognitive principles
to model-finding output: the positive value of negative information. Proc. ACM
Program. Lang. 6(OOPSLA), 1–29 (2022). https://doi.org/10.1145/3527323

8. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press,
Cambridge (2006)

10. Jackson, D.: Alloy: a language and tool for exploring software designs. Commun.
ACM 62(9), 66–76 (2019). https://doi.org/10.1145/3338843

11. Khurshid, S., Marinov, D., Shlyakhter, I., Jackson, D.: A case for efficient solu-
tion enumeration. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol.
2919, pp. 272–286. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24605-3_21

12. Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: class diagrams analysis using alloy
revisited. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol.
6981, pp. 592–607. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24485-8_44

13. Marinov, D., Khurshid, S.: TestEra: a novel framework for automated testing of
Java programs. In: ASE (2001)

14. Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of “why” and
“why not”: enriching scenario exploration with provenance. In: Bodden, E., Schäfer,
W., van Deursen, A., Zisman, A. (eds.) Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, Paderborn, Germany,
4–8 September 2017, pp. 106–116. ACM (2017). https://doi.org/10.1145/3106237.
3106272

Abstract Alloy Instances 381

15. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
principled scenario exploration through minimality. In: Notkin, D., Cheng, B.H.C.,
Pohl, K. (eds.) 35th International Conference on Software Engineering, ICSE’13,
San Francisco, CA, USA, 18–26 May 2013, pp. 232–241. IEEE Computer Society
(2013). https://doi.org/10.1109/ICSE.2013.6606569

16. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: LISA (2010)

17. Ponzio, P., Aguirre, N., Frias, M.F., Visser, W.: Field-exhaustive testing. In: FSE
(2016)

18. Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: specification-
guided coverage for model finding. In: Havelund, K., Peleska, J., Roscoe, B., de
Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 568–587. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-95582-7_34

19. Ringert, J.O., Sullivan, A.K.: Abstract alloy instances artefact (2022). https://doi.
org/10.5281/zenodo.7339931

20. Ringert, J.O., Sullivan, A.K.: Abstract alloy instances code (2022). https://github.
com/jringert/alloy-absinst

21. Samimi, H., Aung, E.D., Millstein, T.: Falling back on executable specifications.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 552–576. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14107-2_26

22. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. In: SAT (2001)

23. Sullivan, A.: Hawkeye: user-guided enumeration of scenarios. In: Jin, Z., Li, X.,
Xiang, J., Mariani, L., Liu, T., Yu, X., Ivaki, N. (eds.) 32nd IEEE International
Symposium on Software Reliability Engineering, ISSRE 2021, Wuhan, China, 25–
28 October 2021, pp. 569–578. IEEE (2021). https://doi.org/10.1109/ISSRE52982.
2021.00064

24. Sullivan, A.: Hawkeye: user guided enumeration of scenarios. In: ISSRE (2021)
25. Sullivan, A., Jovanovic, A.: Reach: refining alloy scenarios by size. In: ISSRE (2022)
26. Sullivan, A., Marinov, D., Khurshid, S.: Solution enumeration abstraction: a model-

ing idiom to enhance a lightweight formal method. In: Ait-Ameur, Y., Qin, S. (eds.)
ICFEM 2019. LNCS, vol. 11852, pp. 336–352. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-32409-4_21

27. Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test generation and
mutation testing for alloy. In: 2017 IEEE International Conference on Software
Testing, Verification and Validation, ICST 2017, Tokyo, Japan, 13–17 March 2017,
pp. 264–275. IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.
31

28. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71209-1_49

29. Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic
hardware-aware exploit synthesis: the CheckMate approach. IEEE Micro 39(3),
84–93 (2019)

30. Nokhbeh Zaeem, R., Khurshid, S.: Contract-based data structure repair using alloy.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 577–598. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14107-2_27

31. Zave, P.: Reasoning about identifier spaces: how to make chord correct. IEEE
Trans. Softw. Eng. 43(12), 1144–1156 (2017). https://doi.org/10.1109/TSE.2017.
2655056

382 J. O. Ringert and A. Sullivan

32. Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Soft. Eng. 28(2), 183–200 (2002). https://doi.org/10.1109/32.988498

33. Zhang, C., et al.: Alloymax: bringing maximum satisfaction to relational specifi-
cations. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 155–167. ESEC/FSE 2021, Association for Computing Machinery, New
York, NY, USA (2021)

