
Refining Alloy-Based Mutation Operators to Reflect
Common Mistakes

Ana Jovanovic
University of Texas at Arlington

Arlington, TX USA
ana.jovanovic@mavs.uta.edu

Mohammad Nurullah Patwary
University of Texas at Arlington

Arlington, TX USA
mxp9161@mavs.uta.edu

Allison Sullivan
University of Texas at Arlington

Arlington, TX USA
allison.sullivan@uta.edu

Abstract—Alloy is a declarative modeling language that is well-
suited for verifying system designs. A key strength of Alloy is
its scenario-finding toolset, the Analyzer, which allows users to
explore all valid scenarios that adhere to the model’s constraints
up to a user-provided scope. Despite the Analyzer, writing correct
Alloy models remains a difficult task, partly due to Alloy’s
expressive operators, which allow for succinct formulations of
complex properties but can be difficult to reason over manually.
One recent body of work introduces mutation testing for Alloy
models, that can also automatically generate a mutant-killing test
suite. Unfortunately, a recent empirical study highlights that the
existing first order mutant operators are not reflective of common
mistakes. Therefore, this paper explores ways in which we can
augment the mutation testing process to generate mutants that
better reflect actual mistakes that users might make.

Index Terms—Alloy, Mutation Testing, Test Generation

I. INTRODUCTION

Our lives are increasingly dependent on software systems.
However, these same systems, even the most safety-critical
ones, are notoriously buggy. Therefore, there is a growing
need to produce reliable software while keeping the cost
low. One solution is to make use of declarative modeling
languages to help improve software correctness. Alloy [14]
is one such popular modeling language. A key strength of
Alloy is the ability to develop models in the Analyzer, an
automated analysis engine that invokes off-the-shelf Boolean
satisfiability (SAT) solvers to search for scenarios, which are
assignments to the sets of the model such that all executed
formulas hold. Alloy models and their corresponding scenarios
have been used to validate software designs [18], [20], to test
and debug code [10], [19], to repair program states [22], [30]
and to synthesize security attacks [26], [4], [6].

Unfortunately, the model itself needs to be correct to gain
these many benefits. While the Analyzer enables automated
analysis of models, the Analyzer only supports ad-hoc tech-
niques for testing the correctness of the model itself, such
as enumerating all scenarios and visually inspecting them
for issues, which is both time-consuming and error-prone.
To address this gap, prior work created AUnit to give users
a way to systematically check for the correctness of Alloy
models [25]. With the existence of AUnit, several traditional
imperative testing practices were ported to Alloy, including
mutation testing, fault localization, and repair [27], [28], [29].

µAlloy is the mutation testing framework, which generates
mutants, generates a mutant-killing test suite, and performs
traditional mutation testing [24], [28], [16]. To generate mu-
tants, µAlloy first defines a series of mutation operators that
focus on making manipulations to Alloy constraints at the ab-
stract syntax tree (AST) level. During the mutation generation
process, µAlloy takes advantage of Alloy’s expressive logic
and declarative execution environment to proactively prune
equivalent mutants. Moreover, for all non-equivalent mutants,
µAlloy generates and stores an AUnit test case that kills the
mutant. To perform mutation testing, µAlloy takes the set of
mutants generated, an Alloy model, and an AUnit test suite,
and as output, reports a mutation score that coveys how many
mutants the test suite successfully kills.

However, these mutation operators are based on Alloy’s
grammar divisions. For instance, when a mutant replaces an
operator, the replacement options are all operators in the same
division, i.e. for =, the possible replacements are all other
comparison operators (!=, in, and !in). Traditionally, mutant
operators are intended to mimic small mistakes users might
realistically make. Unfortunately, a recent user study into
mistakes users make when writing Alloy models found that
µAlloy’s current mutation operators are only able to correct
10.96% of the faulty models. In other words, µAlloy’s current
mutation operators do not reflect mistakes users actually make.

The main reason for this is that while users often make
small logical mistakes, these mistakes manifest as multi-step
not single-step mistakes. For instance, when trying to express
that two sets have an overlap in elements, a common user
mistake is express that one set is a subset of the other (“a
in b”) instead of expressing that there is some intersection
between the two sets (“some a & b”). However, transforming
“a in b” into “some a & b” requires a second order mutant.
Therefore, this paper explores two avenues to generate mutants
that better reflect mistakes. First, we use the recent user study
to translate common mistakes into new mutation operators.
Second, we generate second order mutants at large. In our
experimental evaluations, we investigate the effectiveness of
both of these approaches to produce an improve set of mutants.

In this paper, we make the following contributions:
New Mutation Operators: We use recently identified com-
mon encoding mistakes to define new mutation operators.
Second Order Mutants: We outline a process for generating

(a) (b)
1. sig Person {
2. teaches: set Course,
3. enrolled: set Course,
4. projects: set Project
5. }
6. sig Professor,Student in Person {}
7. sig Course {
8. projects: set Project,
9. grades: Person -> Grade
10. }
11. sig Project {}
12. sig Grade {}
13.
14. pred inv8 { // A professor cannot teach herself
15. all p: Person | no p.teaches & p.enrolled
16. }
17. run inv8 for 3

Person0
Professor

Person1
Student

Course0

Grade0Project0

teaches enrolled

grades(Person0)projects

Fig. 1. Alloy model of a course management system and a corresponding satisfying scenario.

second order mutants of Alloy models.
Evaluation: We evaluate the improvements our new mu-
tant operators can achieve in comparison to the increase in
overhead. We also investigate the feasibility of second order
mutants and highlight why they are beneficial but expensive.
Open Source: We release an implementation of our
framework that is built on top of version 6.0.0 of
the Analyzer at https://anonymous.4open.science/r/
MuAlloyExpansion-FDD5/.

II. BACKGROUND

In this section, we describe Alloy and µAlloy.

A. Alloy

To highlight how modeling in Alloy works, Figure 1 (a)
depicts a model of a course management system. Signature
paragraphs and the relations declared within introduce atoms
and their relationships (lines 1 - 12). Line 1 introduces Person
as a named set of atoms and declares three relations (teaches,
enrolled, and projects). The relation teaches is a binary
relation that conveys the idea that each Person atom can
connect to any number of (set) Course atoms. Signatures
can be declared as extensions or subsets of other signatures.
For instance, line 6 introduces the named sets Professor and
Student as subsets of Person.

Predicate paragraphs introduce named formulas that can
be invoked elsewhere (lines 14 - 16). The inv8 predicate
uses universal quantification (all) and set intersection (&) to
express the idea “no person can be both teaching and enrolled
in the same course.” Commands indicate which formulas to
invoke and place an upper bound on what scope to explore
(line 17). The command in Figure 1 (a) instructs the Analyzer
to search for a scenario using at most 3 Person atoms, 3
Course atoms, 3 Project atoms and 3 Grade atoms such
that inv8 evaluates to true.

Figure 1 (b) displays one such satisfying scenario found
by the Analyzer. Scenarios in Alloy are created by making
assignments to the sets in the model, where each signature
and relation is represented as their own set. In this paper, we
refer to the elements within a set as atoms. In Figure 1 (b),
Person is a set, and Person0 and Person1 are the atoms in

TABLE I
µALLOY MUTANT OPERATORS.

Operator Description
MOR Multiplicity Operator Replacement
QOR Quantifier Operator Replacement
UOR Unary Operator Replacement
BOR Binary Operator Replacement
LOR List Operator Replacement
POI Prime Operator Insertion
UOI Unary Operator Insertion
VOI Variable Operator Insertion
BOD Binary Operator Deletion
UOD Unary Operator Deletion
PBD Paragraph Body Deletion
POD Prime Operator Deletion
LOD Logical Operand Deletion
VOD Variable Operator Deletion
BOE Binary Operand Exchange
IEOE Imply-Else Operand Exchange

the set. A user can step through all the scenarios found by the
SAT solver, inspecting them for correctness. If no satisfying
scenario is found, then the formulas invoked are unsatisfiable
for the user-specified scope.

B. µAlloy

µAlloy introduces mutation testing for version 6.0 and
earlier of Alloy [24], [28], [16], which focuses on relational,
first-order logic, set theory and linear temporal logic.

1) Mutant Generation and Automated Test Generation:
µAlloy applies mutation operators to Alloy AST nodes. The
currently supported mutation operators can be seen in Table I.
Replacement mutant operators will swap logical operators
that fall into the same classification in Alloy’s grammar, e.g.
replacing set intersection “A & B” with set union “A + B.”
Exchange mutant operators will swap the order of operands
for logical operators with multiple operands, e.g. “A & B” mu-
tates to “B & A.” Insertion mutant operators will add logical
operators, e.g. inserting the reflexive transitive closure operator
mutates “A & B” to “*A & B.” Deletion mutant operators will
delete logical operators, e.g. deleting the empty set operator
in “no A & B” results in the mutant “A & B.”

For every node in the AST, µAlloy applies all applicable
mutation operators one at a time to that location, generating a

https://anonymous.4open.science/r/MuAlloyExpansion-FDD5/
https://anonymous.4open.science/r/MuAlloyExpansion-FDD5/

series of first-order mutants. Then, µAlloy stores a collection
of mutated models that (1) successfully compile and (2) are
not equivalent to the original. Unlike mutation testing for
imperative languages, µAlloy is able to systematically check
at generation if a mutant is equivalent to the original model.
In Alloy, check commands search for counterexamples, a
scenario in which the invoked formulas fail to hold true.
Therefore, to determine if a mutant is equivalent, µAlloy
executes a command of the form:

check {OriginalFormula <=> MutatedFormula}

which uses the bi-conditional operator (<=>) to assert that
the mutated and original formulas should never differ in
their truth values. If a counterexample is found, then µAlloy
determines the mutant is not equivalent and saves the mutant.
In addition, µAlloy will automatically turn the counterexample
into an AUnit test case. The end user then labels the converted
counterexample as “valid” or “invalid” to provide the oracle
for the test case. If no such counterexample can be found,
then µAlloy determines the mutant is equivalent and prunes
the mutant. In the end, the mutant generation process outputs
(1) a set of all non-equivalent mutants and (2) a test suite that
is capable of killing all non-equivalent mutants.

2) Mutation Testing: To perform mutation testing, µAlloy
takes as input an Alloy model, an AUnit test suite, and a set of
mutants. As output, µAlloy reports the mutation score, which
displays the ratio of the number of killed mutants to the total
number of mutants. µAlloy considers a mutant to be killed if
a test case execution passes the mutant model and fails on the
original model or vice versa.

III. MUTANT GENERATION AUGMENTATIONS

In this section, we outline our new mutant operators and a
process for generating second order mutants.

A. New Mutant Operators

Our new mutant operators are based on common mistakes
made by novice users [17]. Overall, this study identified
16 common mistakes, which we have distilled into 10 new
mutation operators, as some common mistakes are already
covered by existing mutant operators. In addition, not all
mistakes translated to a mutation template, such as “trying
to explicitly outlined steps” which meant that users tried to
employ a range of temporal operators to outline step by step
changes to sets. What this looks like formulaically is very
specific to the property being expressed and does not lead
to a generic template to apply to any given formula. To
illustrate how these mutant operators work, we use the course
management model from Section II.

B. First Order Mutants

Signature Extension Replacement (SER): This mutation
operator replaces a signature with a parent or child signature.
Signatures can be declared as subset (in) or extensions of
(extends) other signatures. When this happens, the child
signature is a subtype of the parent signature. As a result,

parent and children signatures can be exchanged without
causing a type error.

from: all s: Student | s.projects in s.enrolled.projects
to: all s: Person | s.projects in s.enrolled.projects

In this example, the domain become more broad, while the
mutation operator unfolding in the opposite direction would
make the domain more narrow.

Field Replacement (FER): This mutation operator replaces
a field with other fields form the same signature.

from: all p: Person | p in teaches
to: all p: Person | p in enrolled

Depending on the domain being modeled, field declarations
can represent similar subsets of atoms that all have the
same internal type, which can result in users accidentally
interchanging the fields.

Nested Quantification Disjoint Insertion (NQDI): This
mutation operator inserts the disjoint (“disj”) keyword for
nested quantification. If nested operators reason over overlap-
ping sets for their domain, then the disjoint keywords enforces
that the quantified variables can never be assigned the same
atom at the same time.

from: all p1, p2 : Person | p1.teaches != p2.teaches
to: all disj p1, p2: Person | p1.teaches != p2.teaches

Nested Quantification Exchange (NQE): When the nested
quantification operators are different, the order in which the
quantification is declared impacts the valid behavior, even if
the nested quantified occurs as back to back declarations.
Therefore, this mutation operator swaps the order the nested
quantification is declared in.

from: one c: Course | all p: Project | c->p in projects
to: all p: Project | one c: Course | c->p in projects

In this case, the first formula checks that for exactly one
course atom, all project atoms are projects associated with
this course. In contrast, the second formula checks that for all
project atoms, there is exactly one course that contains this
project.

C. Higher Order Mutants

Quantifier Domain Insertion (QDI): This operator
changes the quantified domain if the domain originally consists
of a signature that has one or more children signatures,
irregardless of if they are subset or extension signatures. This
operator manipulates the domain by insertion the binary set
operators (difference (-)), insertion (&)), union (+)) along
with the children signatures.

from: all t: Person | some t.Teaches
to: all t: Person - Student | some t.Teaches
to: all t: Person - Teacher | some t.Teaches

This operator is particularly helpful when a parent signature
has multiple children.

When looking into common mistakes that users make when
writing formulas, we found that users often did not know when

to use quantification operators versus when to use relational
multiplicity operators. At a high level, this means that users
frequently did not make the right choice when trying to check
whether a property holds for all elements of a set or whether a
property holds for a set at large. To address this, we introduce
two higher order mutant operators.

Quantifier Operator Deletion (QOD): This mutation oper-
ator replaces a quantified formula with a generalized relational
formula.

from: all t:Teacher| some t.Teaches
to: some Teacher.Teaches

Quantifier Operator Insertion (QOI): This mutation oper-
ator replaces a generalized relational formula with a quantified
formula.

from: some Teacher.Teaches
to: all t:Teacher| some t.Teaches

Set Subset Replacement (SSR): This mutation operator
interchanges the subset with a formula that checks for some
set intersection. This operator also interchanges the subset
exclusion operator with a formula that checks for no set
intersection. At a high level, this mutation operator address
a subtle different when trying to check if there is some or
no overlap between two sets. The biggest way that these two
formulations differ is when reasoning over empty sets. For
empty sets, “a in b” will be true but “some a & b” will be
false. This can produce incorrect behavior where the model
may fail to generate scenarios where these sets are empty.

s: all p : Person | p.teaches !in p.enrolled
c: all c: Component | no p.teaches & p.enrolled

Set Disjoint Replace (SDR): This mutant operator ensures
that when checking if an atom is included in only one of two
sets, that the atom is not actually in both sets, ensuring the
desired disjoint-ness.

from: all p : Person | p in Professor or p in Student
to: all p : Person | p in Professor => p !in Student

This mutation operator is similar to SSR and is rooted in
the same common mistakes. but focuses on how this mistake
manifests when the user is trying to check that an atom is
only in one of two sets. For instance, in English saying “a
person is either a professor or a student” implies a person is
not both. However, simply using the disjunction operator (or)
allows for a person to be both, despite the keyword matching
the English sentence.

Unary Temporal Exchange (UTE): This mutation oper-
ator moves a leading temporal operator inside the quantified
formula. The course management example does not contain
mutable signatures or relations. Therefore, the below example
is from the trainstation_ltl model. The property is checking
that for a train track, every signal will eventually turn green.

from: eventually all s: Signal | s in Green
to: all s: Signal | eventually s in Green

Algorithm 1: Second Order Mutant Generation

Input: Alloy model module, Mutation Operators muOps
organized by type (D,E,I,R)

Output: Second order mutants of module.
1 firstOrderMutants ← map type (D,E,I,R) to mutants
2 while module.hasMoreASTNodes() do
3 node = module.nextASTNode()
4 for muOp ∈ muOps do
5 if canApplyMutationOperator(node, muOp then
6 firstOrder = applyOperator(node, muOp)
7 if isValid(firstOrder) then
8 firstOrderMutants.put(muOp.type,firstOrder)

9 secondOrderMutants ← map type (DD,DE,etc) to mutants
10 for type1 ∈ firstOrderMutants.keySet() do
11 for firstOrderMutant ∈ firstOrderMutants.get(type1) do
12 while firstOrderMutant.hasMoreASTNodes() do
13 node = firstOrderMutant.nextASTNode()
14 for muOp ∈ muOps do
15 if canApplyMutationOperator(node, muOp

then
16 secondOrder = applyOperator(node,

muOp)
17 if isValid(secondOrder) then
18 secondOrderMutants.put(type1 +

muOp.type,secondOrder)

19 return secondOrderMutants

The novice study highlights that users had a high preference
to place all the temporal operators at the front of the formula.
However, which subformulas the temporal operator applies to
can have a subtle but meaningful impact on if a boundary
scenario is valid or not.

D. Second Order Mutants

The recent empirical study over novice mistakes highlights
that small conceptual mistakes in encoding logic more often
translate to multi-step edits to fix. Therefore, we also want to
explore the viability of second order mutants. At a high level,
to generate a second order mutant, we first use µAlloy to
produce all first order mutants for a model m. Then, for each
first-order mutant f , we run µAlloy on the mutant, producing
first order mutants of f , which are then second-order mutants
of m.

Algorithm 1 shows our algorithm for generating second
order mutants in detail. Lines 1 - 8 follow µAlloy’s traditional
mutant generation approach. The only difference is that we
now store the first order mutants by their type (‘D’ for deletion
mutants, ‘E’ for exchange mutants, ‘I’ for insertion mutants,
and ‘R’ for replacement mutants). This mapping, stored in
firstOrderMutants, is then used as a base to generate
second order mutant.

Lines 9 - 19 generate and return all valid, non-equivalent
second order mutants. We first loop over all first order mutants
by type (line 10 - 11). We then apply the standard mutant
generation process where we apply all applicable mutant
operators for all AST nodes (lines 12 - 16). Then, for each

mutant produced by a mutation operator, we check is that
mutant (secondOrder) is valid and non-equivalent to the
original model (module). If so, we then save the second order
mutant (lines 17-18). At the end, we return all second order
mutants organized by type (line 19). The type ‘DD’ would
mean the second order mutant was the result of two deletion
mutation operators being performed.

IV. EVALUATION

We address the following research questions:
• RQ1: What is the overhead of our expanded mutation

operators compared to the original operators?
• RQ2: How effective are our expanded mutation operators

at detecting faults compared to the original operators?
• RQ3: How effective are our expanded mutation operators

at correcting faults compared to the original operators?
• RQ4: What is the tradeoff in potential versus overhead

of second order mutants?

A. Set Up
In our study, we use the publicly released Alloy4Fun

dataset, which contains real-world models obtained from mas-
ter’s students submissions from the University of Minho (UM)
and the University of Porto (UP) in the academic period from
Fall 2019 to Spring 2023 [5]. For these models, users were
tasked with completion predicates in a given Alloy model
to match a provided English description. In total, there are
97,755 submissions that span 17 different Alloy models and
183 predicates to be filled in (exercises). We filtered out cor-
rect submissions, non-compilable submissions and syntactic
duplicates, leaving 25,180 unique faulty submissions.

Table II gives an overview of the complexity of the models
used in our study in terms of the universe of discourse
each model creates. Column Model is the Alloy4Fun model
under consideration. Models with an underscore in their name
represent models that have multiple versions in the dataset.
Between versions, the number of exercises, instructional text,
and/or the type of logic can change. Column #Sig is the total
number of signatures in the model, #Abs is the number of ab-
stract signatures, #Ext is the number of signatures that extend
another signature, #Rel is the number of relations, Arity is
the average arity of all relations in the model (2 indicates a
binary relation), #Exe is the number of exercises and #AST
is the average number of abstract syntax tree (AST) nodes in
the oracle solutions for all exercises of that model. Column
#Faults is the number of faulty submissions for that model.
A faulty submission consists of the base model (signature
and fact paragraphs) and the executed faulty predicate. Given
this composition of a faulty submission, all results presented
represent the performance of generating mutants, generating
tests and performing mutation testing for a single predicate
within a model.

B. RQ1: Overhead Comparison
Tables III and IV present an overview of the performance

of mutant generation and mutation testing. Table III high-
lights the performance for the original mutant operators, our

TABLE II
COMPLEXITY OF BASE MODELS

Model #Sig #Abs #Ext #Rel Arity #Exe #AST #Faults
classroom_fol 5 0 2 3 2.33 15 10.00 1499
classroom_rl 5 0 2 3 2.33 15 10.13 1286
courses_v1 6 0 2 5 2.2 15 16.87 3948
courses_v2 6 0 2 5 2.2 15 16.87 2210
cv_v1 5 1 2 4 2 4 19.75 404
cv_v2 5 1 2 4 2 4 21.75 168
graphs 1 0 0 1 2 8 7.63 816
lts 3 0 1 1 3 6 19.71 761
productionLine_v1 5 0 2 3 2 4 14.25 191
productionLine_v2 10 1 7 4 2 10 14.90 1495
productionLine_v3 10 1 7 4 2 10 14.90 1091
socialMedia 5 0 2 5 2 8 15.75 5493
trainstation_fol 7 0 5 2 2 10 13.40 2569
trainstation_ltl 6 0 4 3 2 17 23.44 608
trash_fol 3 0 2 1 2 10 4.80 436
trash_ltl 3 0 2 1 2 20 8.55 1630
trash_rl 3 0 2 1 2 10 4.80 575
AVG/TOTAL 5.18 0.24 2.71 2.94 2.12 10.65 13.97 25180

baseline. Table IV highlights the performance with our new
mutant operators included. Column Model is the Alloy4Fun
exercise under consideration. As Table II highlights, there are
multiple submissions per exercise. Therefore, we present the
average, min and max for all of our metrics. The next four
sections present metrics for the mutant generation process.
The columns under #EQ is the number of equivalent mutants
and the columns under #NEQ is the number of non-equivalent
mutants. During generation, we produce a test suite that kills
all non-equivalent mutants. The columns under #Test displays
the number of tests produced. Lastly, the columns under Tgen

is the overall runtime to generate mutants, which includes
checking for equivalence and capturing test cases to kill all
non-equivalent mutants. For mutation testing, we use this test
suite. As a result, the mutation score is, by design, always
100%; therefore, we do not report the mutation testing score.
The final division, Tmt, is the runtime to perform mutation
testing. All runtimes are shown in seconds.

µAlloy has previously only been evaluated over a small
benchmark of 13 models [28] and the two temporal Alloy4Fun
submissions sets (trash_ltl and trainstation_ltl). Therefore,
we first highlight some of the common trends that highlight
characteristics of µAlloy at large. Often times, the number of
tests needed to kill the non-equivalent mutants is notable less
than the number of non-equivalent mutants. As a result, non-
equivalent mutants do not produce a linear increase in work for
the user to provide an oracle for the generated test. In addition,
the average runtime to generate mutants and perform mutation
testing is trivial, with generating mutants taking about 3.5
seconds and mutation testing taking 3 to 5 seconds.

However, there are outliers. For four models (courses_v2,
socialMedia, trainstation_ltl and trash_ltl) the maximum
runtime encountered for mutant generation is 22 to 323 min-
utes. This spike in runtime occurs when the faulty submission
under consideration takes the SAT solver a long time to solve.
In generation, this faulty submission is analyzed repeatedly
to determine if a mutant is equivalent. For mutation testing,
these problematic faulty submissions also bloat the runtime,
although notably with less impact as (1) the faulty predicate
is being invoked less often and (2) test cases narrow the
SAT search by outlining explicit set restrictions for all the
signatures and relations in the model.

TABLE III
BASELINE MUTATION GENERATION AND TESTING PERFORMANCE

EQ # NEQ # Tests Tgen TmtModel avg min max avg min max avg min max avg min max avg min max
classroom_fol 5.83 0 93 22.72 4 108 12.42 1 57 0.80 0.06 3.80 1.24 0.06 16.72
classroom_rl 4.20 0 116 16.18 3 111 8.38 1 39 0.48 0.06 4.21 0.82 0.04 17.73
courses_v1 6.32 0 84 20.66 4 72 9.36 1 43 2.03 0.20 8.55 1.69 0.15 12.25
courses_v2 7.54 0 109 20.74 1 126 9.20 1 57 2.52 0.19 1766.66 2.26 0.05 2108.41
cv_v1 8.68 0 47 19.26 3 52 6.57 1 20 0.72 0.06 1.93 0.76 0.03 3.49
cv_v2 8.04 0 37 21.31 6 55 7.14 2 26 0.83 0.21 2.42 0.83 0.10 3.65
graphs 9.44 0 64 18.11 2 67 5.90 1 23 0.52 0.05 2.14 0.17 0.01 1.75
lts 4.18 0 36 12.92 3 43 6.01 1 24 0.48 0.06 8.86 0.28 0.03 3.15
productionLine_v1 3.13 0 26 12.83 2 44 5.43 1 16 1.02 0.14 2.99 0.47 0.05 2.38
productionLine_v2 13.41 0 117 24.14 2 86 13.08 1 63 1.19 0.24 5.95 3.05 0.10 27.65
productionLine_v3 13.40 0 101 25.22 2 130 13.02 1 48 1.15 0.17 6.33 3.02 0.07 23.61
socialMedia 12.09 0 104 30.13 3 141 24.11 1 123 4.45 0.50 17254.14 2.41 0.04 787.25
trainstation_fol 7.33 0 110 24.40 1 102 12.63 1 51 0.69 0.54 3.86 1.72 0.05 30.10
trainstation_ltl 27.17 2 171 40.45 3 181 24.61 1 132 34.73 0.65 1603.61 50.86 0.12 3299.96
trash_fol 5.49 0 40 17.52 2 37 7.98 1 22 0.40 0.05 1.21 0.43 0.02 1.91
trash_ltl 16.97 2 99 39.58 5 93 23.31 1 67 20.95 0.62 1998.76 2.75 0.09 17.82
trash_rl 4.19 0 53 13.61 2 47 6.37 1 17 0.39 0.06 4.41 0.32 0.02 4.67
TOTAL 9.65 0 171 24.53 1 181 14.31 1 132 3.54 0.05 17254.14 2.56 0.01 3299.96

TABLE IV
NEW OPERATORS MUTATION GENERATION AND TESTING PERFORMANCE

EQ # NEQ # Tests Tgen TmtModel avg min max avg min max avg min max avg min max avg min max
classroom_fol 12.30 0 117 45.40 5 149 19.84 2 74 1.26 0.09 5.01 2.80 0.09 24.03
classroom_rl 8.21 0 170 31.94 4 166 13.30 2 54 0.66 0.07 4.84 1.81 0.06 33.92
courses_v1 13.09 0 118 38.16 4 103 15.15 1 56 2.27 0.16 8.16 3.57 0.15 24.44
courses_v2 14.56 0 149 37.95 1 162 14.82 1 69 2.83 0.14 1885.09 4.44 0.05 3478.52
cv_v1 13.89 0 64 30.60 4 70 9.12 1 25 1.11 0.17 3.48 1.23 0.03 4.66
cv_v2 13.86 0 50 31.76 7 71 9.59 2 30 0.88 0.31 3.10 1.24 0.11 4.53
graphs 10.41 0 68 20.15 2 69 6.24 1 23 0.37 0.03 1.73 0.14 0.01 1.34
lts 7.29 0 44 22.27 4 74 9.09 2 29 0.47 0.05 8.38 0.53 0.04 6.89
productionLine_v1 7.24 0 46 21.09 4 61 7.41 2 21 1.14 0.18 3.36 0.77 0.09 3.31
productionLine_v2 27.32 0 241 56.39 2 185 22.39 2 106 1.58 0.13 7.12 7.81 0.11 55.56
productionLine_v3 26.68 0 248 56.45 2 186 21.53 1 96 1.53 0.20 6.13 7.38 0.07 43.12
socialMedia 19.50 0 143 52.59 3 243 34.53 2 154 5.11 0.08 19415.63 4.72 0.06 1443.40
trainstation_fol 14.72 0 164 52.92 1 224 20.29 1 85 1.02 0.07 5.85 4.14 0.05 49.24
trainstation_ltl 32.96 2 188 55.46 6 212 28.41 2 140 29.84 0.52 1346.15 73.73 0.32 4724.06
trash_fol 10.48 0 58 27.98 5 64 10.56 1 33 0.47 0.07 1.36 0.72 0.04 3.10
trash_ltl 21.36 2 120 50.19 8 111 26.79 2 77 18.58 0.58 1743.76 3.50 0.11 19.96
trash_rl 7.30 0 67 22.95 2 53 8.97 1 26 0.47 0.08 4.82 0.68 0.02 31.08
TOTAL 16.58 0 248 44.16 1 243 21 1 154 3.6 0.03 19415.63 4.93 0.01 4724.06

The other common thread between the base operators and
our expanded operators is that first order mutants do frequently
create equivalent mutants. Equivalent mutants make up an
average of 39.34% of all mutants generated for the base op-
erators and an average of 27.29% for the expanded operators,
which does include some higher order mutants. In other words,
making a single change to a formula has a high likelihood of
not actually changing the behavior of the formula. Overall, this
reinforces the idea that when a user makes a faulty formula,
the corrections needed are likely to require multiple edits.

In terms of overhead, more non-equivalent mutants does
not lead to a one-to-one increase in tests and the run-
times associated with mutation testing are often minor.
However, first order mutants are also likely to simply be
equivalent to the original formula.

While there are high level trends about µAlloy that our
experiments help highlight, there are still differences in be-
havior between the original mutant operators and the expanded

mutant operators due to the increase in the number of operators
that can be considered at a given AST node. Therefore, to help
compare these performances, Table V presents the difference
in average performance when subtracting µAlloy’s average
performance with the new mutant operators from µAlloy’s
baseline average performance. The columns Model, #NEQ,
#EQ, #Test, Tgen and Tmt all have the same meaning as
Tables III and IV.

Since we have added mutation operators, we expect that
the number of mutants generated, the number of tests and the
runtimes to all increase. These trends are supported in Table V.
However, there are a few models in which the generation
time is faster for the new mutant operators. There are a
few reasons why this occurs. First, some of the new mutant
operators rely on certain properties to be present in the model
to apply, such as extension signatures, nested quantification
or temporal logic. Therefore, for some models, there will be
a subset of the new mutant operators that will never apply.
Second, when solving back to back formulas that are similar,
Alloy’s SAT solver is primed from the first invocation and can

TABLE V
COMPARISON BETWEEN BASELINE AND NEW OPERATORS

Diff N-O
Model # EQ # NEQ # Tests Tgen Tmt

classroom_fol 6.47 22.68 7.42 0.46 1.56
classroom_rl 4.01 15.76 4.92 0.18 0.99
courses_v1 6.77 17.50 5.79 0.24 1.88
courses_v2 7.02 17.21 5.62 0.31 2.18
cv_v1 5.21 11.34 2.55 0.39 0.47
cv_v2 5.82 10.45 2.45 0.05 0.41
graphs 0.97 2.04 0.34 -0.15 -0.03
lts 3.11 9.35 3.08 -0.01 0.25
productionLine_v1 4.11 8.26 1.98 0.12 0.30
productionLine_v2 13.91 32.25 9.31 0.39 4.76
productionLine_v3 13.28 31.23 8.51 0.38 4.36
socialMedia 7.41 22.46 10.42 0.66 2.31
trainstation_fol 7.39 28.52 7.66 0.33 2.42
trainstation_ltl 5.79 15.01 3.80 -4.89 22.87
trash_fol 4.99 10.46 2.58 0.07 0.29
trash_ltl 4.39 10.61 3.48 -2.37 0.75
trash_rl 3.11 9.34 2.60 0.08 0.36
TOTAL 6.93 19.63 6.69 0.06 2.37

solve the second one faster. Since mutant generation involves
solving many overlapping SAT problems, the increase in the
number of mutants being evaluated does not always have a
net negative effect. Third, SAT solvers have variability in the
paths they explore first when trying to solve a CNF formula.
This variability can lead to small differences in runtimes even
when evaluating the same formula back to back.

For instance, the generation time for trainstation_ltl sub-
missions is on average 4.89 seconds faster with the new mutant
operators. This is likely because there are less submissions for
this model, therefore, the SAT solver got more primed due to
the increase in mutants. However, this does not translate to
the mutation testing runtime, where trainstation_ltl’s average
runtime is 23 seconds longer with the new mutant operators
considered. This is because test cases do not produce the
overlapping subproblems that mutants do, as test cases can
vary drastically from each other. All told, the runtimes are
largely similar, with often a nominal different in mutant
generation time and a small difference in mutation testing time.

Moreover, while about 20 more non-equivalent mutants are
generated, this only amounts to an average of 6 additional
tests. The number of tests reflects the manual labor a user has
to put into mutation testing, as the user does need to provide
the test oracle. However, labeling an additional six tests is
not likely to produce a noticeable increase in burden on the
user on top of the average of 14 tests they would already be
labeling.

While the new mutant operators do increase both the
number of mutants generated and the number of tests,
the overall impact on total overhead is small.

C. RQ2: Detection Comparison
While our mutant killing test suite is capable of detecting

all non-equivalent mutants, that does not mean that our test
suite will detect all faults in a model. We consider a mutant to
detect a fault when at least one test case behaves differently on
the mutated model compared to the oracle model. This differs
from correction, in which the mutated model is logically

TABLE VI
ABILITY OF MUTANTS TO DETECT FAULTS

Orignal New OperatorsModel #T #D % #D % % Change

classroom_fol 1499 1398 93.26 1428 95.26 2.00
classroom_rl 1286 1149 89.35 1211 94.17 4.82
courses_v1 3948 3699 93.69 3775 95.62 1.93
courses_v2 2210 2067 93.53 2109 95.43 1.90
cv_v1 404 173 42.82 371 91.83 49.01
cv_v2 168 56 33.33 152 90.48 57.14
graphs 816 743 91.05 754 92.40 1.35
lts 761 702 92.25 722 94.88 2.63
productionLine_v1 191 160 83.77 167 87.43 3.66
productionLine_v2 1495 1371 91.71 1408 94.18 2.47
productionLine_v3 1091 1000 91.66 1026 94.04 2.38
socialMedia 5493 5407 98.43 5456 99.33 0.89
trainstation_fol 2569 2493 97.04 2523 98.21 1.17
trainstation_ltl 608 253 41.61 538 88.49 46.88
trash_fol 436 386 88.53 395 90.60 2.06
trash_ltl 1630 1546 94.85 1555 95.40 0.55
trash_rl 575 508 88.35 529 92.00 3.65
TOTAL 25180 23111 91.78 24119 95.79 4.00

equivalent to the oracle model. Table VI displays the results of
this experiment. Column Model is the Alloy4Fun exercise and
column #T is the total number of unique faulty submissions
for the exercise. The next two columns depict the detection
ability of the original mutant operators. Column #D is the
number of faulty submissions that were detected and %D
is the percentage. The next two columns present the same
information when our new mutant operators are considered.
Lastly, column % Change depicts the increase in detection
our new operators enables, which is calculated by subtracting
the new mutant operator %D from the original.

The original mutant operators are fairly effective at de-
tecting faults: on average, µAlloy’s original operators detect
91.78% of all faulty submissions. Notably, the performance is
lagging for three models: cv_v1, cv_v2 and trainstation_ltl.
These three models do have the longest oracle solutions, which
implies that their solutions are more complex. In addition,
these models also have less submissions made for them overall.
The high level of difficulty may turn off inexperienced users
from attempting these submissions. This could increase the
degree of which the faulty submission is close to the oracle
solution, making detection harder for these models as the
test cases would be more likely to behave the same for both
models. Importantly, our new mutant operators close this gap
for these models w.r.t the other models in the dataset. The
average detect rate with the new operators is 95.79%, with
these three models have a minimum detection rate of 88.49%.
In addition, for socialMedia, the new mutant operators raise
the detection rate to over 99%.

The new mutant operators address the gaps in the fault
detection capability of the previous set of operators, given
the drastic increase in fault detection ability the new
mutant operators achieve with respect to the models with
less than a 50% detection previously.

D. RQ3: Correction Comparison

Our motivation for creating new mutant operators is that
the original mutant operators did not correlate to common
mistakes that users make. Therefore, we want to evaluate

TABLE VII
ABILITY OF MUTANTS TO CORRECT FAULTS

Orignal New OperatorsModel #T #C % #C % % Change

classroom_fol 1499 114 7.61 207 13.81 6.20
classroom_rl 1286 114 8.86 221 17.19 8.32
courses_v1 3948 150 3.80 659 16.69 12.89
courses_v2 2210 91 4.12 420 19.00 14.89
cv_v1 404 13 3.22 20 4.95 1.73
cv_v2 168 8 4.76 14 8.33 3.57
graphs 816 184 22.55 203 24.88 2.33
lts 761 40 5.26 60 7.88 2.63
productionLine_v1 191 22 11.52 43 22.51 10.99
productionLine_v2 1495 220 14.72 284 19.00 4.28
productionLine_v3 1091 122 11.18 166 15.22 4.03
socialMedia 5493 632 11.51 822 14.96 3.46
trainstation_fol 2569 324 12.61 443 17.24 4.63
trainstation_ltl 608 67 11.02 90 14.80 3.78
trash_fol 436 145 33.26 188 43.12 9.86
trash_ltl 1630 359 22.02 407 24.97 2.94
trash_rl 575 155 26.96 215 37.39 10.43
TOTAL 25180 2760 10.96 4462 17.72 6.76

the effectiveness of our new mutant operators by determining
what impact these operators have on our ability to correct
faulty models. To evaluate this, for each faulty submission, we
checked whether any mutant generated was equivalent to the
oracle solution. If so, then we flagged the faulty submission as
correctable. Table VII displays the results of this experiment.
Column Model is the Alloy4Fun exercise and column #T is
the total number of unique faulty submissions for the exercise.
The next two columns depict the correction ability of the
original mutant operators. Column #C is the number of faulty
submissions that were corrected and %C is the percentage.
The next two columns present the same information when
our new mutant operators are considered. Lastly, column %
Change depicts the increase in detection our new operators
enables, which is calculated by subtracting the new mutant
operator %C from the original.

The original mutant operators can only correct 10.96%
of all faulty submissions. There are some models, such as
graphs and the three trash models (trash_fol, trash_ltl and
trash_rl) where the correction rate is over 20%. However,
there are also several models in which the correction rate is
at or below 5% (courses_v1, courses_v2, cv_v1, cv_v2, lts).
Interestingly, these results highlights that the original mutant
operators are capable of generating diverse test suites that can
reveal faults, despite the mutants themselves not accurately
representing common modeling mistakes. To further highlight
that fault detection and correct are not tightly coupled for
Alloy models, while the fault detection for trainstation_ltl
is low, the correction rate for trainstation_ltl is higher than
several models that had a better fault detection ability.

In comparison, our new mutant operators raise the correc-
tion rate to 17.72% on average. With the new mutant operators,
only one model, cv_v1 has a correction rate of less than
5%. At the same time, several models now have a correction
rate of over 35%, with trash_fol and trash_rl having a
correction rate of 43.12% and 37.39% respectively. While all
models experienced an increase in correction rate, the highest
increase is on models where the parent/child signature relation-
ships is present (classroom_fol, classroom_rl, courses_v1,
courses_v2, trash_fol, productionLine_v1, trash_rl). This is
not surprising, as multiple new mutation operators (SER and

TABLE VIII
MUTANT OPERATORS THAT CORRECT MISTAKES

Op # Fix Percent
UOI 1270 16.20
UOR 354 4.52
UOD 158 2.02
BOR 824 10.51
BOD 286 3.65
BOE 172 2.19
LOD 218 2.78
LOR 53 0.68
QOR 685 8.74
POI 55 0.70
PBD 0 0.00
SER 1410 17.99
FER 102 1.30
NQE 58 0.74
NQDI 74 0.94
QOD 6 0.08
QOI 0 0.00
SSR 366 4.67
QDI 1715 21.88
SDR 2 0.03
UTE 31 0.40

QDI) address the existence of extension and subset signatures,
while none of the original mutation operators reason over this
attribute at all.

To get a better understanding of how representative each
mutation operator is of real mistakes, Table VIII displays the
rate of which a given mutation operator is able to correct
a faulty model. Column Op is the mutation operator under
consideration. Column #Fix is the number of mutants of
that operator that fix a faulty submission and Percent is the
percentage that this number is out of the total number of
correcting mutants. Of the original operators, UOI, BOR and
QOR mutants predominately fixed faulty submissions. Two
new mutant operators, SER and QDI, provide more fixes
than any of the original operators. As Table II highlights,
a substantial number of the models from Alloy4Fun have
extension signatures. This was clearly a gap in the previous
mutant operators, and closing this gap is one of the main
reasons that the new operators are capable of correcting more
mistakes.

The new mutant operators improve the correction rate,
most notably by covering aspects of the language not
previously handled.

The nested quantification operators can correct some faults,
but not a high amount. However, this is expected. A recent
static profile of publicly available Alloy models on Github
reveals that nested quantification is rarely used [11]. Further-
more, the NQDI operator will only produce a non-equivalent
mutant if the nested quantified formulas reason over the same
domain and the user forgot to account for the overlap in
elements. That said, the NQE operator does highlight that
users do make mistakes when trying to determine the right
order in which to nest quantified formulas.

Three of the new mutant operators are not effective at
correcting mistakes: QOI, QOD and SDR. While SDR is
rooted in a common mistake pattern for how users check set
membership, the operator is a more niche version than the

TABLE IX
SECOND ORDER MUTANT CORRECTIONS AND SIZE OVERVIEW

graphs cv_v1 trash_folSO # Fix % Fix # Mut # Tests # Fix % Fix # Mut # Tests # Fix % Fix # Mut # Tests
DD 46 5.64 16.17 2.5 3 0.74 45.17 3.41 11 2.52 6.94 1.68
DE 18 2.21 4.42 1.87 0 0.00 11.16 2.22 7 1.61 3.4 2.30
DI 132 16.18 31.37 3.86 0 0.00 33.06 2.36 45 10.32 9.83 3.18
DR 170 20.83 49.56 8.53 299 74.01 177.61 20.11 157 36.01 33.89 8.72
ED 29 3.55 9.47 2.91 0 0.00 21.13 3.72 32 7.34 8.69 3.38
EE 4 0.49 2.07 1.32 0 0.00 4.27 1.43 0 0.00 4.03 1.72
EI 20 2.45 24.3 3.04 0 0.00 19.39 1.74 9 2.06 19.07 4.59
ER 98 12.01 24.31 8.15 49 12.13 65.04 17.56 57 13.07 36.29 11.35
ID 140 17.16 64.06 4.99 0 0.00 77.88 4.53 51 11.70 31.92 4.37
IE 20 2.45 17.37 2.43 0 0.00 19.27 1.60 9 2.06 20.92 4.91
II 112 13.73 106.44 3.92 0 0.00 6.46 1.11 56 12.84 54.63 4.73
IR 240 29.41 158.82 10.37 71 17.57 235.08 15.98 147 33.72 134.42 16.07
RD 163 19.98 66.26 6.07 277 68.56 185.68 11.44 149 34.17 52.89 6.38
RE 90 11.03 15.77 3.98 42 10.40 42.06 5.89 56 12.84 27.84 6.94
RI 222 27.21 130.48 7.41 38 9.41 90.55 5.11 136 31.19 90.1 10.60
RR 257 31.50 160.51 11.08 187 46.29 593.44 70.68 169 38.76 209.54 16.54
Combined 378 46.32 881.38 82.43 308 76.24 1627.25 168.89 280 64.22 744.4 107.46

more successful SSR operator. However, QOI and QOD are
derived from users selecting the wrong level of quantification,
which the novice study reveals is the most frequent mistake.
These mutant operators ended up not being as effective at
correcting faults because when the wrong level of quantified is
used, the subformula is often very similar but slightly different.
Manually inspecting the common mistakes that inspired these
mutation operators revealed that the current QOD and QOI
combined with a BOR or UOR mutant application in the
subformula would have corrected many more faults.

Mutant operators changing the level of quantification
additionally highlight that real mistakes often involve
more than one location.

E. RQ4: Effectiveness vs. Expense of Second Order Mutants

Although our new mutant operators close the gap in de-
tection, the correction rate of the mutant operators is still
low at an average of 17.72%. As a result, there is still a
disconnect between the common mistakes users make and
our mutation operators. To explore if second order mutants
better reflect common mistakes, Table IX displays the fault
correction capabilities of second order mutants for the graphs,
cv_v1 and trash_fol models. The graphs model is one of the
simplest models in the Alloy4Fun dataset, and can highlight
potential scalability issues even for simple models. The cv_v1
models has the lowest correction rates, while the trash_fol
has the highest correction rate for first order mutants. Column
SO is the type of second order mutant, where D is a deletion
action, E is an exchange action, I is an insertion action and R
is a replacement action. For each model, column # Fix is the
number of faulty submissions fixed by the type of second order
mutant and column % Fix is what percentage this is out of
the total number of faulty submissions for the model. Column
Mut is the number of non-equivalent mutants produced
and # Tests is the number of test cases needed to kill all

non-equivalent mutants. The Combined row highlights the
performance of all second order mutants considered together.

As Table IX highlights, second order mutants are inherently
more representative of the mistakes users makes as across the
model. For our subset of three models, 46.32% to 76.24% of
the faulty submissions can be directly fixed by a second order
mutant. However, producing all second order mutants produces
a high overhead. For the simpler graphs and trash_fol models,
which have smaller predicates, there are on average 881.31
and 744.4 second order mutants generated per predicate. Even
worse, for the more complex cv_v1 model, there is on average
over 1,600 second order mutants created per predicate. Inter-
estingly, this average number of tests generated to kill these
mutants is magnitudes smaller: 82 for graphs, 169 for the
cv_v1 model and 107 for trash_fol. One reason for this is that
there may be high redundancy in second order mutants. We
may be able to notably prune the number of mutants generated
if we also check for equivalence with any previously existing
mutant, not just equivalence with the original formula being
mutated. However, filtering out mutants that are equivalent
to other mutants is not guaranteed to reduce the number of
tests, as those mutants may have already produced redundant
tests. Either way, the number of tests created is too large to
reasonably expect a user to manually label.

In terms of effectiveness, not all categories of second order
mutants are equal. Across all models, any second order mutant
combination that involves a replacement action is substantially
more representative of mistakes than any of the other com-
binations. In addition, the remaining insertions second order
combinations (DI, ID, and II) are fairly effective for the graph
and trash models.

Second order mutants are promising, as they are much
more representative of mistakes users actually make.
however, a brute force approach to second order mutants
creates an infeasible number of tests to label per predicate
for the user.

While second order mutants capture real mistakes users
make, second order mutants have a high overhead to generate.
As Tables III and IV indicate, there are some first order
mutants that take a prohibtive amount of time to generate
mutants for. This issue is only compounded for second order
mutants, where these problematic first order mutants took days
to generate second order mutants for. To illustrate consider the
inv8 faulty submission for trainstation_ltl shown below which
took about 27 minutes to generate first order mutants for:
1. pred inv8[] {
2. always (all t: Train {
3. ((some t.pos.signal && some t.pos.prox) &&
4. (t.pos.signal in (Signal - Green))) =>
5. eventually once (some t.pos) since
6. (t.pos.signal in Green)
7. })
8. }

In addition to being verbose, this formula contains quantifi-
cation and nested temporal operators that include a combina-
tion of future and past operators. Analyzing this formula, and
the resulting second order mutants that can insert more tem-
poral operators, requires extensive computational resources.
Specifically, to generate all second order mutants for this
submission took about 7 days. Even for less intensive models,
the runtime for second order mutants scales up quickly. For
example, the small, much less complex graphs model has
an average runtime of 11.8 seconds to generate second order
mutants, while first order mutants only take 0.5 seconds.

Second order mutants are not scalable, especially if the
underlying formula takes a non-trivial amount of time
to analyze by itself. All told, this makes second order
mutants at large not feasible.

V. FUTURE WORK: POTENTIAL AVENUES FOR SELECT
SUBSET OF SECOND ORDER MUTANTS

Even though the generation of second order mutants comes
with a cost, second order mutants are effective. Therefore, in
future work, we plan to explore methods for efficiently creat-
ing subsets of valuable second order mutants. One approach
we plan to take is to focus on the second order mutant com-
binations that are the most representative of mistakes, while
also pruning mutants that are equivalent to other mutants. As
another alternative, we will focus on using just the most effec-
tive individual mutant operators to build second order mutants.
We also plan to include QOI and QOD operators despite their
weak performance, as we observed that expressing properties
at the wrong level of quantification is a very common mistake,
but also involves changes to the resulting subformula.

VI. THREATS TO VALIDITY

The Alloy4Fun benchmark is representative of mistakes that
novice users would make; thus, our results may not generalize
to faults made by expert users. While µAlloy is intended to
benefit all users, we believe that novice users are more likely to
seek out the use of µAlloy to build confidence in their model.
The Alloy4Fun benchmark is used both to find common novice
mistakes as well as evaluate our new mutant operators. While

there is this redundancy, our results highlight that targetting
common mistakes alone is still not enough to capture all the
nuances of mistakes users make, even within the same dataset.

VII. RELATED WORK

Testing and Debugging Alloy Models. The most closely
related work to µAlloy is TAR, a mutation-oriented repair
technique that is aimed at repairing Ally4Fun models. TAR
does have some differences in mutation operators. For in-
stance, for a binary formula, the binary logical operators are
combined together into one mutant operator group for TAR.
TAR does consider higher order mutants, but this is done
through applying chains mutants to a faulty location searching
for a valid patch. As a result, TAR’s execution is tailored
to strategically generate higher and higher orders of mutants
until a patch is found. In comparison, our efforts explore the
viability or new and higher order mutant operators to aid in
more effective mutation testing, rather than automated repair.

Besides TAR, there are several bodies of work that focus
on testing and debugging Alloy models. For automated repair,
ARepair is a generate and validate automated repair technique
that uses AUnit test cases to outline expected behavior [27]
and ICEBAR extends ARepair to additionally consider built-
in Alloy assertions to guide the repair and check candidate
patches [12]. In addition, ATR is an Alloy repair technique
that tries to find patches based on a preset number of templates
and uses Alloy assertions as an oracle. For fault localization,
AlloyFL is a hybrid fault localization technique that takes
a faulty Alloy model and an AUnit test suite and returns a
ranked list of suspicious locations [29] and FLACK is a fault
localization technique that locates faults by using a partial
max sat toolset to compare the difference between a satisfying
instance and counterexamples [31]

Mutation Testing. Mutation testing [9], [13] is an active
research area [15] that is well studied for imperative languages
but is lesser explored for declarative languages [7]. Closely re-
lated work introduces mutation testing for model checkers [3],
[8], [21], but the automated analysis is different, resulting in
different strategies fo executing and checking mutants. Our
work is also closely related to mutation testing efforts for other
specification languages. Srivatanakil et al. [23] who define
mutation operators for CSP specifications written using FDR2
syntax [1]. Aichernig and Salas [2] define specification muta-
tion for OCL and apply it to pre/post-condition specifications
for constraint-based testing.

VIII. CONCLUSION

This paper explores trying to make Alloy’s mutation op-
erators better reflect common mistakes through new mutant
operators and second order mutants. Our experimental results
reveal that our new mutant operators close the gaps in fault
detection, but lack the ability to accurately represent mistakes
users actually make. In contrast, our second order mutants
overlap significantly with real mistakes, but are not feasible
due to their overhead. However, this opens the door to consider
how to generate valuable subests of second order mutants.

REFERENCES

[1] Software FDR2. http://www.fsel.com/software.html
[2] Aichernig, B.K., Salas, P.A.P.: Test case generation by ocl mutation and

constraint solving. In: QSIC. pp. 64–71 (2005)
[3] Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants—model-

based mutation testing with timed automata. In: Tests and Proofs: 7th
International Conference, TAP 2013, Budapest, Hungary, June 16-20,
2013. Proceedings 7. pp. 20–38. Springer (2013)

[4] Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards
a formal foundation of web security. In: 2010 23rd IEEE Computer
Security Foundations Symposium. pp. 290–304 (2010)

[5] Alloy4Fun Benchmark: https://zenodo.org/record/4676413 (2022)
[6] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for

detection of security flaws in the android permission system. In: Formal
Aspects of Computing. p. 544 (2018)

[7] Belli, F., Jack, O.: Declarative paradigm of test coverage.
Software Testing, Verification and Reliability 8(1), 15–47 (1998).
https://doi.org/10.1002/(SICI)1099-1689(199803)8:1<15::AID-
STVR146>3.0.CO;2-D, http://dx.doi.org/10.1002/(SICI)
1099-1689(199803)8:1<15::AID-STVR146>3.0.CO;2-D

[8] Black, P.E., Okun, V., Yesha, Y.: Mutation of model checker specifica-
tions for test generation and evaluation. Mutation testing for the new
century pp. 14–20 (2001)

[9] DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection:
Help for the practicing programmer. Computer 4(11) (Apr 1978)

[10] Dini, N., Yelen, C., Alrmaih, Z., Kulkarni, A., Khurshid, S.: Korat-API:
A framework to enhance Korat to better support testing and reliability
techniques. In: SAC (2018)

[11] Eid, E., Day, N.A.: Static profiling alloy models. IEEE Transactions on
Software Engineering pp. 1–1 (2022)

[12] Gutiérrez Brida, S., Regis, G., Zheng, G., Bagheri, H., Nguyen, T.,
Aguirre, N., Frias, M.: ICEBAR: Feedback-Driven Iterative Repair of
Alloy Specifications. Association for Computing Machinery, New York,
NY, USA (2023)

[13] Hamlet, R.G.: Testing programs with the aid of a compiler.
IEEE Trans. Softw. Eng. 3(4), 279–290 (Jul 1977).
https://doi.org/10.1109/TSE.1977.231145, http://dx.doi.org/10.1109/
TSE.1977.231145

[14] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The
MIT Press (2006)

[15] Jia, Y., Harman, M.: An analysis and survey of the development
of mutation testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (Sep
2011). https://doi.org/10.1109/TSE.2010.62, http://dx.doi.org/10.1109/
TSE.2010.62

[16] Jovanovic, A., Sullivan, A.: Mutation testing for temporal alloy models.
In: 26th ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems, MODELS. pp. 228–238 (2023)

[17] Jovanovic, A., Sullivan, A.: Right or wrong: Understanding how novice
users write software models. arXiv preprint arXiv:2402.06624 (2024)

[18] Maoz, S., Ringert, J.O., Rumpe, B.: CD2Alloy: Class diagrams analysis
using Alloy revisited. In: MODELS (2011)

[19] Marinov, D., Khurshid, S.: TestEra: A novel framework for automated
testing of Java programs. In: ASE (2001)

[20] Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.:
The Margrave tool for firewall analysis. In: LISA (2010)

[21] Okun, V., Black, P.E., Yesha, Y.: Testing with model checker: Insuring
fault visibility. In: Proceedings of 2002 WSEAS international conference
on system science, applied mathematics & computer science, and power
engineering systems. pp. 1351–1356 (2003)

[22] Samimi, H., Aung, E.D., Millstein, T.D.: Falling back on executable
specifications. In: ECOOP. pp. 552–576 (2010)

[23] Srivatanakul, T., Clark, J.A., Stepney, S., Polack, F.: Challenging formal
specifications by mutation: A CSP security example. In: APSEC (2003)

[24] Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test
generation and mutation testing for Alloy. In: ICST (2017)

[25] Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D.: Towards a
test automation framework for Alloy. In: Proceedings of the 2014
SPIN Workshop on Software Model Checking. pp. 113–116 (2014),
http://doi.acm.org.ncat.idm.oclc.org/10.1145/2632362.2632369

[26] Trippel, C., Lustig, D., Martonosi, M.: Security verification via auto-
matic hardware-aware exploit synthesis: The CheckMate approach. IEEE
Micro (2019)

[27] Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for Alloy.
In: ASE (2018)

[28] Wang, K., Sullivan, A., Khurshid, S.: MuAlloy: A Mutation Testing
Framework for Alloy. In: Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE) Demo Track. pp. 29–32 (2018).
https://doi.org/10.1145/3183440.3183488

[29] Wang, K., Sullivan, A., Khurshid, S.: Fault localization for declarative
models in Alloy. In: ISSRE (2020)

[30] Zaeem, R.N., Khurshid, S.: Contract-based data structure repair using
Alloy. In: ECOOP. pp. 577–598 (2010)

[31] Zheng, G., Nguyen, T., Gutiérrez Brida, S., Regis, G., Frias, M.F.,
Aguirre, N., Bagheri, H.: Flack: Counterexample-guided fault localiza-
tion for alloy models. In: 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering (ICSE). pp. 637–648 (2021)

http://www.fsel.com/software.html
https://zenodo.org/record/4676413
http://dx.doi.org/10.1002/(SICI)1099-1689(199803)8:1<15::AID-STVR146>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1099-1689(199803)8:1<15::AID-STVR146>3.0.CO;2-D
http://dx.doi.org/10.1109/TSE.1977.231145
http://dx.doi.org/10.1109/TSE.1977.231145
http://dx.doi.org/10.1109/TSE.2010.62
http://dx.doi.org/10.1109/TSE.2010.62
http://doi.acm.org.ncat.idm.oclc.org/10.1145/2632362.2632369

	Introduction
	Background
	Alloy
	Alloy
	Mutant Generation and Automated Test Generation
	Mutation Testing

	Mutant Generation Augmentations
	New Mutant Operators
	First Order Mutants
	Higher Order Mutants
	Second Order Mutants

	Evaluation
	Set Up
	RQ1: Overhead Comparison
	RQ2: Detection Comparison
	RQ3: Correction Comparison
	RQ4: Effectiveness vs. Expense of Second Order Mutants

	Future Work: Potential Avenues for Select Subset of Second Order Mutants
	Threats to Validity
	Related Work
	Conclusion
	References

