
Crucible: Graphical Test Cases for Alloy Models
Adam G. Emerson

University of Texas at Arlington
Arlington, TX USA

adam.emerson@mavs.uta.edu

Allison Sullivan
University of Texas at Arlington

Arlington, TX USA
allison.sullivan@uta.edu

Abstract—Alloy is a declarative modeling language that is well
suited for verifying system designs. Alloy models are automati-
cally analyzed using the Analyzer, a toolset that helps the user
understand their system by displaying the consequences of their
properties, helping identify any missing or incorrect properties,
and exploring the impact of modifications to those properties.
To achieve this, the Analyzer invokes off-the-shelf SAT solvers
to search for scenarios, which are assignments to the sets and
relations of the model such that all executed formulas hold.
To help write more accurate software models, Alloy has a unit
testing framework, AUnit, which allows users to outline specific
scenarios and check if those scenarios are correctly generated or
prevented by their model. Unfortunately, AUnit currently only
supports textual specifications of scenarios. This paper introduces
Crucible, which allows users to graphically create AUnit test
cases. In addition, Crucible provides automated guidance to users
to ensure they are creating well structured, valuable test cases. As
a result, Crucible eases the burden of adopting AUnit and brings
AUnit test case creation more in line with how Alloy scenarios
are commonly interacted with, which is graphically.

Index Terms—Alloy, SAT Solver, Scenario Enumeration

I. INTRODUCTION

In today’s society, we are becoming increasingly dependent
on software systems. However, we also constantly witness the
negative impacts of buggy software. One way to help develop
better software systems is to leverage software models. When
forming requirements, software models can be used to clearly
communicate to all stakeholders both the desired system as
well as the environment it will be deployed in. When creating
designs and implementations, software models can help reason
over how well the design and implementation choices satisfy
the requirements. As such, software models can help detect
flaws earlier in development and thus aid in the delivery of
more reliable systems.

Alloy [13] is a relational modeling language. A key strength
of Alloy is the ability to develop models in the Analyzer, an
automatic analysis engine based on off-the-shelf SAT solvers,
which the Analyzer uses to generate scenarios that highlight
how the modeled properties either hold or are refuted, as
desired. The user is able to iterate over these scenarios one
by one, inspecting them for correctness. Alloy has been used
to verify software system designs [35], [3], [32], [7], and
to perform various forms of analyses over the corresponding
implementation, including deep static checking [14], [10],
systematic testing [18], data structure repair [34], automated
debugging [11] and to synthesize security attacks [1], [20],
[27].

However, to gain the many benefits that come from utilizing
software models, the model itself needs to be correct. Unfor-
tunately, while Alloy offers succinct formulation of complex
properties, Alloy’s support for expressive operators, such as
transitive closure and quantified formulas, can make writ-
ing non-trivial properties challenging, especially for beginner
users. In Alloy, there are two types of faults that can appear
in a model: (1) under-constrained faults in which the model
allows scenarios it should prevent, and (2) over-constrained
faults in which the model prevents scenarios it should allow. To
help detect these types of faults in an Alloy model, a unit test-
ing framework, AUnit, was created [26], [25]. AUnit enables
users to outline a specific scenario they expect their model
to allow or prevent and then check that this behavior actually
occurs. This improves upon the previous ad-hoc practices that
require users to either (1) enumerate scenarios until finding one
that is malformed or (2) enumerate all scenarios and realize
one was missing, in order to determine if their model is faulty.

AUnit laid the foundation to bring a number of proven
imperative testing practices to Alloy, including mutation test-
ing [29], automated test generation [25], fault localization [30],
automated repair [28] and partial synthesis of models [31].
These extensions help establish a comprehensive testing envi-
ronment for Alloy that is similar to the robust testing support
that imperative languages like Java have. Unfortunately, when
it comes to the actual creation of an AUnit test case, the user is
required to outline the valuation portion of a test case textually
as a series of set equality statements that are wrapped around
an existentially quantified formula.

However, valuations, which outline scenarios, are com-
monly interacted with graphically not textually. This results in
a gap between the user’s mental model of an Alloy valuation
and the way the user currently has to create the valuation in
order for the Analyzer to successfully reproduce it and perform
unit testing. This paper addresses this issue by introducing
Crucible, which establishes support for users to graphically
create test cases. In addition, Crucible leverages the underlying
model to help guide the user to create well-formed test cases
by warning users when they attempt to create test cases that
violate the model’s structural constraints, which helps the user
create stronger, more effective test suites.

In this paper, we make the following contributions:
Graphical Specification of Test Cases: We introduce Cru-
cible, which enables users to create AUnit test cases graphi-
cally through a drag and drop interface.

218

2023 IEEE 34th International Symposium on Software Reliability Engineering (ISSRE)

2332-6549/23/$31.00 ©2023 IEEE
DOI 10.1109/ISSRE59848.2023.00065

(a) (b) (c)

1. one sig List {header: lone Node}
2. sig Node {link: lone Node}
3. pred acyclic {
4. all n : List.header.*link{
5. n !in n.*link }
6. }
7. run acyclic for 3

L0

N0 N1

header

link

1. val TwoNode {
2. some disj N0, N1 : Node, L0 : List{
3. List = L0 , Node = N0 + N1
4. header = L0->N0, link = N0->N1
5. }
6. }
7. @Test Test0: run {acyclic and TwoNode}

Fig. 1. Faulty Alloy Model and Fault-Revealing AUnit Test Case

Automated Guidance: Based on the underlying model, Cru-
cible will prevent users from creating malformed test cases
and inform the user of which part of the model’s signatures
prevents the test case from being feasible.
Evaluation: We evaluate the overhead of Crucible’s trans-
lation between the graphical and textual representation of a
test case. We also use key examples to highlight the need to
support the graphical creation of test cases to ease the burden
of creating test cases for models with complicated structures.
Open Source: We release Crucible as an open-source toolset
at: https://github.com/Crucible-Alloy/Crucible.

II. BACKGROUND

A. Alloy

To highlight how modeling in Alloy works, Figure 1 (a)
depicts a faulty model of a singly-linked list with an acyclic
constraint. Signature paragraphs and the relations declared
within introduce atoms and their relationships (lines 1 - 2).
Line 1 introduces a named set List and uses the relation
header to express that each List atom has zero or one
header node (lone). Similarly, line 2 introduces the named set
Node and uses the link relation to express that each Node

atom points to zero or one other node. Predicate paragraphs
introduce named formulas that can be invoked elsewhere (lines
3 - 6). The predicate Acyclic uses universal quantification
(all), set exclusion (!in), relation join (.), and reflexive
transitive closure (*) to try to express the idea that “for
all nodes in the list, no node is reachable from themselves
following one or more traversals down the link relation.” The
fault, in red, can be corrected by replacing reflexive transitive
closure (‘*’) with transitive closure (‘^’), which will produce
a set that will not include the node itself.

Commands indicate which formulas to invoke and what
scope to explore. The command on line 7 asks the Analyzer to
search for satisfying assignments to all the sets of the model
(List, header, Node, and link) such that Acyclic is true
using up to 3 List atoms and 3 Node atoms. A user can iterate
over all the scenarios found by the SAT solver one by one. At
a conceptual level, each scenario depicts behavior currently
allowed by the modeled system. Figure 1 (b) graphically
displays a scenario that a user would expect to be found by the
Analyzer when the command at line 7 is executed: a list with
two nodes and no cycles. Therefore, the user would expect
to encounter this scenario at some point. However, due to the
fault, this will never happen.

B. AUnit

AUnit addresses the need to have a systematic method to
check the correctness of Alloy models [26]. Before AUnit,
there was no formal notion of “testing” in the Analyzer. As
a result, experienced users would employ a range of ad-hoc
techniques, such as enumerating all scenarios – which can
number in the thousands – and visually inspecting them for is-
sues, a process which is both time consuming and error prone.
Moreover, the number of scenarios can be in the thousands
and the order scenarios are presented is based on the order the
backend SAT solver finds them, which means the scenarios are
effectively unordered. Altogether, this makes the enumeration-
inspection process impractical. For instance, since scenarios
are unordered, the user cannot count on inspecting them in
order of increasing size, which would make it more feasible
to catch a missing scenario.

The key insight behind AUnit is that unit testing, the most
effective way to validate code, provides a blueprint on how
to validate models. Specifically, an AUnit test case consists
of two components: a valuation, which is an assignment to
the sets and relations of the model, and a command, which
specifies the Alloy formulas under test. A test case passes if
the valuation is a valid scenario of the associated command;
otherwise, the test fails. AUnit enables a user to directly ensure
a specific scenario they have in mind is correctly generated
– which checks for over-constrained faults – or prevented –
which checks for under-constrained faults – without having to
rely on encountering the scenario, or not, in the Analyzer.

To demonstrate, Figure 1 (b) and (c) depicts an AUnit
test case graphically and textually which reveals the faulty
behavior. This test case is based on a scenario which is valid
for the correct model, but is incorrectly invalid for the faulty
model. The valuation, outlined in lines 1-6 in Figure 1 (c),
assigns all the sets (List and Node) and relations (header
and link) of the singly-linked list to concrete values, creating
a single scenario to reason over, by using existential quantifi-
cation (‘some’) and the disjoint operator (‘disj’) to declare
local variables and set equality (‘=’) to assign these local
variables to constrain the sets of the model. The command
given in line 7 in Figure 1 (c) outlines the Acyclic predicate
as the formula under test. When the Analyzer executes the test
case, the command is unexpectedly unsatisfiable, revealing the
fault. Prior work has extended the Analyzer with the ability
to natively declare AUnit test cases by extending the grammar
with new keywords: val to outlined valuations and @Test to
flag which Alloy commands refer to test executions [24].

219

https://github.com/Crucible-Alloy/Crucible

C. Challenge: Specifying Test Cases Textually

The textual format, as seen in Figure 1 (c), can be tedious to
provide, especially if the test case reasons over multiple states,
contains numerous atoms or has higher arity relations. These
features in a model can quickly bloat the length of the textual
representation, impacting the readability, and thus usability,
of an AUnit test. For instance, if a model has 10 signatures,
then the atoms for all 10 signatures need to be accounted for as
local variables declared by the existentially quantified formula.
Then, the user needs to make a set equality formula for each
signature. For a scope of 3, this would be declaring up to 30
variables and creating 10 separate set equality formulas for
just the signatures. The test case would still need to create set
equality formulas to account for any relations, which could
utilize all 30 variables multiple times.

The textual representation is also not in line with the default
way users inspect scenarios, which is graphically. As a result,
requiring users to supply the textual representation increases
the burden on the user to accurately translate their mental
image of a scenario into a valid test case. In fact, recent work
has demonstrated the importance of spatial cognition ability in
solving Alloy tasks for both novice and expert users [17]. This
is especially true for writing AUnit test cases, which requires
the user to mentally picture a scenario of interest and then
accurately write constraints to, in turn, generate that exact
scenario. Crucible addresses these pain points by allowing
the user to directly supply the graphical representation of a
scenario, which Crucible will automatically translate to the
textual representation.

III. Crucible

This section outlines important implementation details of
Crucible, which is a standalone desktop application. We first
present an overview of Crucible’s system architecture. Then
we step over the process of creating test cases, including how
Crucible ensures a user cannot create a malformed test case
and how Crucible automatically translates graphical renderings
to textual test cases.

A. Framework Overview

Figure 2 displays the high level software architecture for
Crucible. Crucible looks to connect two main processes to-
gether: (1) the React graphical user interface (GUI), which
the user will use to create AUnit test cases and (2) the
Alloy Analyzer, which will execute the AUnit test cases.
While the Analyzer is written in Java, our GUI is built using
popular web technologies; Typescript, React, and Electron.
To ensure the two processes are able to communicate, the
Analyzer is wrapped in a SpringBoot REST API which is
launched in conjunction with the GUI. This API handles
the communication between processes when Alloy is needed,
which occurs (1) when the model is initially parsed and
its signature and predicate information is stored for use by
Crucible and (2) when a test case is executed. Although it
may have been a more obvious choice to write Crucible using
a Java framework like JavaFX [21], which would do away with

Fig. 2. Crucible Software Architecture Diagram

the additional overhead of an API, we opted for a web-based
desktop platform for several reasons.

Firstly, the core purpose of Crucible is to improve both
user experience and efficiency while writing AUnit test cases.
With this in mind, it is critical that the application’s interface is
familiar, intuitive, and performant. Front-end frameworks like
React, Angular, and Vue, have all been driving forces in UI
development over the last decade [22]. These frameworks, par-
ticularly React, have grown to support a massive ecosystem of
well-documented off-the-shelf primitive components that serve
to expedite development of web and desktop applications alike.
Thanks to widespread adoption of React and the GUI oriented
nature of the web, the available open-source components are
of a higher-quality than those which may be available within
the Java ecosystem.

Secondly, of equal importance is the portability and accessi-
bility of Crucible. By writing Crucible with web technologies,
specifically React and Typescript, we ensure that deployment
of Crucible is even more flexible than that afforded by Java.
If in the future a third-party wished to host Crucible on a
server for remote learning or some other application, it would
be relatively trivial to port the codebase into a fully fledged
web application. Notably, one of the main educational envi-
ronments for Alloy is the Alloy4Fun website, which provides
an online hosted platform for editing, sharing and interpreting
Alloy models [16]. Crucible’s current form factor can more
easily be integrated with Alloy4Fun than a JavaFX variant of
Crucible. As a result, Alloy4Fun can feasibly be updated to
give new users a native environment to easily address “how
do I test my Alloy program?”

B. Creating a Project

To get started with Crucible, the user first needs to input
their Alloy model into a new "Project". Each project consists
of a single Alloy file, and acts as an organizational object

220

(a) (b)

Fig. 3. Crucible canvas in action: (a) highlighting in green the allowed connections and (b) declaring higher arity connections.

for all of the tests written for the model. Upon selecting an
Alloy file, the file path is sent via the API to the Java process,
where it is passed into the Alloy Analyzer and converted into a
JSON object of the model’s signature and predicate definitions.
The JSON object is then returned to the GUI process where
it is cached in a SQLite database for subsequent usage. The
SQLite database is used by Crucible to help provide automated
guidance, as it contains all the information needed to know any
structural constraints attached to a model’s signatures, such as
multiplicity constraints, and any defined relations. The SQLite
object also stores all the information needed such that Crucible
can easily allow users to test any predicate currently defined
in the model, including ensuring that the user provides the
required parameters for a predicate, if needed.

C. Creating a Test Case

Once the model has been imported and a project has been
initialized, the user can then create any number of test cases.
Each test is uniquely named, and consists of (1) a canvas
onto which the user can spawn any number of atoms and
connections, as allowed by the model, and (2) a set of all
predicates and assertions declared in the model, by which the
user can select which predicate(s) to consider under evaluation.
Atoms are elements of signature sets and connections populate
relations onto the canvas, e.g. to replicate the valuation in
Figure 1 (b), N0 would be a placeable Node atom and the red
header directed line would be a placeable connection.

In Crucible’s project view, the model’s signatures are pre-
sented as small tokens in a drawer menu on the left hand
side. Each token displays the signature’s name, relations, and
multiplicity. Every token is assigned a color upon project
initialization which can be edited to the user’s liking. To build
a test, atoms are dragged from the appropriate signature token
and onto the canvas. Upon being added to the canvas, each
atom is automatically given a unique nickname for use in
command string generation and to help identify the atom as a
predicate parameter. Once a sufficient number of atoms have
been added to the canvas, connections can be made between
them through a similar drag and drop interaction, or in the case
of connections with a higher arity, a modal pop-up. Changes

to a test case are saved automatically as they are made, further
streamlining the process and allowing a user to focus on the
task at hand.

D. Automated Guidance

As atoms are dropped onto the canvas, Crucible checks the
current canvas state for multiplicity violations and alerts the
user if they are attempting an addition that violates the model.
Consider the List signature from our singly-linked list model:

1. one sig List {header: lone Node}

This signature uses the singleton multiplicity constraint, mean-
ing that there can only be one List object for any valid
scenario of this model. Therefore, if a user tries to form a
test case with multiple List objects, Crucible will alert the
user that she is attempting to violate the structural constraints
of the List signature. This is an important detail for the user
to be aware of, as any test with more than one List object
will always be prevented by the model. Therefore, Crucible’s
proactive guidance ensures the user will not incorrectly draw
conclusions about the correctness of any predicates under test.
To illustrate, if the user built the following valuation:

L1L0

N0 N1

header

link

and checked that it is successfully prevented by the acyclic

predicate, the user could build a false sense of security in
the accuracy of their acyclic predicate, as the valuation will
always be prevented due to the presence of two List atoms,
regardless of any formulas in acyclic.

As a user initiates a connection interaction to add relations
to the canvas, valid connection targets will be highlighted
based on the defined relations in the model, as seen in Figure 3
where the two Node atoms are glow green to outline valid
header connections. If a user attempts to make a connection
to a non-valid target, they will be notified of the issue. In

221

addition, if the user attempts to make a connection that violates
a relational multiplicity constraint, they will again be notified
and the action will be prevented.

To illustrate, consider the header relation:

1. one sig List {header: lone Node}

The header relation conveys two important pieces of infor-
mation. First, the header relation is meant to connect a List

atom to a Node atom. Second, the multiplicity constraint lone
further restricts this by asserting that for each List atom, the
header relation can only connect that List atom to either no
Node atom or exactly one Node atom. As seen in Figure 3 (a),
when a user wants to add a header relation to their test case,
the user will see that the relation must start on a List object,
and only end connections on Node atoms will be highlighted.

For higher arity (3+) relations, we do not currently enforce
multiplicity constraints. However, if a higher arity connection
is specified of the form “a->b->c” and the user deletes the
connection “a->b,” we automatically remove “b->c” from
the canvas. In addition, to add a higher arity connection, we
created a tailored modal that helps guide the user to specify
each segment of the connection with drop-down menus that
populate with only the valid atom options. Figure 3 (b) shows
the higher arity relation modal. Since our singly linked list
model only has binary relations, we use the LTS from our
evaluation in Section IV-B to highlight this interface and its
corresponding guidance.

Crucible’s proactive nature of preventing users from creat-
ing test cases that violate the constraints outlined in signature
paragraphs, and alerting users as to why what they are attempt-
ing to create is malformed, ensures that user is both aware
of how the structural constraints of their model restrict the
shape of valid valuations and ensures the user knows that the
valuation is prevented because of these structural constraints,
regardless of any command portion the user may have placed
on the test case. This directly prevents the false sense of
security that can be formed about a predicate mentioned
earlier, where creating a test case with more than one list
does not help us evaluate the acyclic predicate or any other
system property the user writes.

As a tradeoff for the guidance we provide, users cannot
directly form test cases for constraints enforced by the signa-
ture paragraphs of their model. We do believe that users should
ensure their signature paragraphs are correct and modify them
if they are not. Since Crucible proactively gives the user
detailed error message pop-ups when the user tries to violate
multiplicity constraints and grays out improper relation con-
nections, the user still interactively explores these constraints
within Crucible, enabling the user to still check the accuracy
of their signature paragraphs, albeit indirectly. However, we
feel the tradeoff is worthwhile to ensure users are actually
testing the predicates they intend to.

E. Automated Translation

Running a test in Crucible is as simple as pressing a
button. At runtime, the test’s canvas is converted into an

AUnit command string that the Alloy API can process and
execute using the Analyzer. The command string is a series
of valid Alloy formulas that, when executed, will produce just
the scenario outlined on the canvas. To create the command
string, Crucible processes each atom captured on the canvas,
which includes tying the atom to its unique nickname and
capturing all of the declared connections attached to this
atom. Then, Crucible builds a mapping from each atom to the
atom’s associated signature. Once this mapping is formed, for
each signature, Crucible generates an existentially quantified
formula of the form:

some disj [nickname]* : [signature name] {

The disj keywords ensures that each variable name listed
will produce a distinct atom for any satisfying instance. For
example, in Figure 3 the following will get generated based
on the state of the canvas:

some disj L0 : List {
some disj N0, N1 : Node {

where N0 and N1 cannot be represented by the same atom for
any scenario produced by the Analyzer. Crucible processes
each signature in the order they are declared in the model.
Once all nicknames have been declared as local variables,
Crucible generates a set equality formula of the form:

[signature name] = [nickname] (+ [nickname])* |
no [signaure name]

[relation name] = [connection] (+ [connection])* |
no [relation name]

where (+) is set union. As a result, the value each signature
set can take for any generated scenario is restricted to just
the declared local variables of that type and nothing else. In
addition, relations are restricted to the connections specified
by the atoms. Likewise, the set equality formula must be
declared within the scope of the local variables. If there are
no atoms in the canvas for a signature or no connections for
a relation, then the empty set operator (no) is used instead
to ensure that this signature or relation does not appear in
the corresponding scenario the Analyzer generates to satisfy
the outlined valuation. For our example this will result in the
following:

some disj L0 : List { //Start of L0 scope
some disj N0, N1 : Node { //Start of N0, N1 scope
List = L0, Node = N0 + N1
header = L0->N0, linke = N0-N1

Before running a test the user has the option of modifying
the predicate(s) they wish to test. Users can adjust predicates
by opening the predicate modal, where they will be able to
assign atoms by nickname as parameters and chose one of the
states for the predicate, as seen in Figure 4.

The states are "Don’t Test" (null), where the predicate is
not tested, "Valid", where the valuation is expected to be
generated by the predicate, and "Invalid" where the valuation is
expected to be prevented by the predicate. Based on the user’s

222

Fig. 4. Crucible Predicates Modal

selection, Crucible will append the following information to
the command string:

null: ""
true: [predicate name][(param)*]
false: ![predicate name][(param)*]

For our example, this will result in the following:

some disj L0 : List { //Start of L0 scope
some disj N0, N1 : Node { //Start of N0, N1 scope

List = L0, Node = N0 + N1
header = L0->N0, linke = N0-N1
acyclic[]

}}

Outlining the predicate under test within the scope of the local
variables is important, as predicates can have parameters. For
instance, if acyclic was defined as “acyclic[l : List]”
then the predicate under test would become “acyclic[L0],”
which the Analyzer will fail to compile if the predicate call is
located outside the scope of the L0 variable.

Once the command string is generated, the string is sent to
the Java Process to be run in the Analyzer. If the command
string is satisfiable, the API returns a success code to the
GUI Process, and the user is notified that the test has passed.
Alternatively, if the test is not satisfiable, the API returns
the failure. It is worth noting that due to the multiplicity
constraints being strictly enforced on the canvas, it is not
possible to generate a failing test case without enabling one or
more predicates, with the exception of higher arity relations
which require further exploration.

IV. EVALUATION

We evaluate Crucible in two ways. First, we evaluate the
overhead of translating graphical renderings into executable
test cases. Second, we conduct an illustrative case study over
a select set of models to highlight how Crucible can ease the
burden of creating test cases for models with tedious features
for textual test case creation.

A. Overhead

Table I shows the runtime to translate the canvas state of
Crucible into a command string for increasingly larger and
larger test cases. Column Model conveys the model under
evaluation. The next two columns outline the size of the
model: column #Sig is the number of signatures and column

TABLE I
OVERHEAD OF TRANSLATION

Model #Sig #Rel #Atoms #Con Time[ms]

LTS 3 1

3 3 6
6 6 9

12 12 11
24 24 14
48 48 21

CV 5 4

9 20 8
21 35 9
36 60 11
48 80 14
60 100 25

#Rel is the number of relations in the model. To convey the
size of the test case, column #Atoms displays the number
of atoms on the canvas and column #Con shows the number
of connections on the canvas. Column Time[ms] conveys the
average time it takes (rounded to the nearest millisecond)
across ten executions for Crucible to generate the command
string once the execute test button in pressed. To perform
the calculations, we create incrementally larger graphical test
cases in Crucible for the two models we explore in our
case study: the LTS model, which contains a higher arity
relation, and the CV model, which contains a large number
of signatures and relations.

The result of these benchmarks indicate that the conversion
process of a canvas into a command string is negligible.
Runtime appears to increase linearly as the number of atoms
and connections does, but even with an impractically large
model of 60 atoms and 100 arity-3 connections, the translation
process on our modest workstation (a 2014 Macbook Pro) did
not exceed an average of 25ms. With this is mind, we conclude
that the graphical-to-textual translation process adds virtually
no overhead when working on an Alloy model of a typical
size, and is unlikely to be an issue for larger scale models.

B. Case Study: Debugging Real World Faulty Models

For our case study, we focus on two models from the
Alloy4Fun benchmark [2]. Alloy4Fun is a online learning
platform for Alloy whose exercises have users attempt to write
predicates for various models, which are checked against a
back-end oracle solution. Submissions to Alloy4Fun have been
anonymized and made into an open source benchmark. These
models represent faulty models created by new Alloy users.
While AUnit is available for any Alloy user, we envision that
new users are more likely to utilize AUnit. Our case study
looks to highlight how different model structures can make
writing AUnit test cases tedious and error prone.

1) Higher Arity Relations: Often times, Alloy models con-
sist of binary relations (2-arity). For instance, in Figure 1, the
relation header is a binary relation of the form List×Node.
This is conceptually easier for a user to visualize mentally
and put on paper, as the header can be envisioned a directed
line that connects a single List atom to a single Node atom.
However, in Alloy, it is possible for a relation of higher arity
to be specified. To illustrate, consider the Labeled Transition
System (LTS) model from the Alloy4Fun benchmark shown
in Figure 5. Line 1 introduces the signature State, which

223

1. sig State { trans : Event -> State }
2. sig Init in State {}
3. sig Event {}
4.
5. //The LTS is deterministic.
6. pred inv3 {
7. all s : State, e : Event | lone s.(e.trans)
8. }

Fig. 5. Faulty Model of a Labeled Transition System (LTS)

contains the relation trans. This relation is a tenary relation
(3-arity) of the form State×Event×State. Rather than
being a directed line between two atoms, trans indirectly
connects two states through an intermediate Event atom. The
idea of the trans relation is that the transitions between states
are triggered by events; therefore, this intermediate Event

atom is an important connection between the states.
For the remainder of the LTS model, line 2 introduces the

Init signature as a subset (in) of the State signature, which
conveys the initial state of the system, and line 3 introduces
the signature Event that contains no relation itself. We elect
to illustrate Crucible’s experience over predicate inv3, which
is the third exercise in the LTS model on Alloy4Fun, as it
involves the trans ternary relation in its formulation. The
faulty predicate inv3 (lines 6 - 8) is meant to convey that
the LTS is deterministic, meaning that for every state, every
Event triggers either no transition or a unique transition to a
next state. The faulty formulation uses an incorrect order of
the relational joins. To illustrate, the following is the correct
version of the predicate, with the difference highlighted in red:

all s : State, e : Event | lone e.(s.trans)

This error is a subtle change textually, but the fault results
in a formula that is trivially always true. Namely, the faulty
expression “e.trans” looks to form a relational join of the
form Event with State×Event×State. Since there is a
type mismatch, this first join will always produce an empty
set. Since an empty set always satisfies the lone multiplicity
constraint, this produces the trivially true behavior. To reveal
this fault, the user needs an AUnit test case in which an Event

triggers multiple possible state transitions for the same state.
Consider the following fault revealing test case, where the

red text highlights the behavior the model should prevent:

some disj State0, State1: State | Event0, Event1,
Event2: Event {{
State = State0 + State1
trans = State1->Event0->State0

+ State1->Event0->State1
Event = Event0 + Event1 + Event2
Init = State1
}}

Since Event0 triggers two different transitions for State1,
the valuation should not be generated, but the faulty predicate
will produce it. For comparison, Figure 6 displays the same
test case recreated in Crucible. For the visual test case, the user
can see that State1 has two transitions, but both use Event0,
as there are not connections drawn to Event1 or Event2. In
both cases, a user is likely to spot the issue with the conflict
being the only values population the trans relation.

Fig. 6. The faulty LTS test case in Crucible

Consider the process of creating a larger test case. For
example, the following test case that extends the previous one:

some disj State0, State1, State2: State | Event0,
Event1, Event2: Event {{
State = State0 + State1 + State2
trans =

State0->Event0->State0 + State0->Event0->State1
+ State0->Event0->State2 + State0->Event1->State0
+ State0->Event1->State1 + State0->Event1->State2
+ State0->Event2->State0 + State0->Event2->State1
+ State0->Event2->State2 + State1->Event0->State0
+ State1->Event0->State1 + State1->Event0->State2
+ State1->Event1->State0 + State1->Event1->State1
+ State1->Event1->State2 + State1->Event2->State0
+ State1->Event2->State1 + State1->Event2->State2
+ State2->Event0->State0 + State2->Event0->State1
+ State2->Event0->State2 + State2->Event1->State0
+ State2->Event1->State1 + State2->Event1->State2
+ State2->Event2->State0 + State2->Event2->State1
+ State2->Event2->State2

Event = Event0 + Event1 + Event2
Init = State1
}}

which is significantly harder to follow textually. The extension
to this test case is derived by using Amalgam [19] to create a
maximal scenario based on the first test case. Using Amalgam
allows us to highlight one of the largest (and therefore more
complex) fault revealing test cases that a user could create with
AUnit while remaining in the same scope as the small initial
test case. There are several instances in which a user may be
motivated to create larger test cases. For instance, if a user is
looking to perform fault localization, repair or partial model
synthesis with their AUnit test suite, past experiments reveal
that larger test cases that encompass a wide degree of behavior
result is notably better performance for these frameworks [30],
[28], [31].

Realistically, if creating this test manually, the user is likely
to copy, paste and then tweak assignments to the trans

relation, which is an error prone process. In addition, if the
user is textually specifying a relation this large, the user would
realistically execute the test case and visually inspect the
scenario the Analyzer produces multiple times as they build

224

Fig. 7. The maximal LTS test case in Crucible

up the valuation, to make sure the valuation actually matches
their expectation.

In contrast, Figure 7 displays this same larger test case
recreated in Crucible. Due to the different format of creating
a test, Crucible removes the potential for copy-paste errors.
More importantly, since Crucible provides a live graphical
view as the user builds up a test case, Crucible removes
the need to do repeated executions to spot-check the textual
specification. These spot-checks do involve repeatedly running
Alloy’s backend SAT solver, although AUnit tests do not
individually have a high overhead. While both the textual and
graphical representations are cluttered, it is easier to implement
lightweight interventions to make a graphical test case more
readable. For instance, when a user hovers on a connection,
we can gray out all unrelated atoms, easily bringing different
portions of the trans relation into focus for the user. For
now, users can drag and re-arrange the visual layout to better
inspect connections post-creation. In contrast, there is no easy
pathway to increase readability for the textual representation.

2) Numerous Signatures and Relations: In a recent profile
of over 2000 different Alloy models [9], the median number
of signatures and relations in a model is 8 and 2 respectively.
Therefore, it is realistic to expect that a user may work with a
model that contains a large number of signatures and relations.
As the number of signatures and relations grow, the complexity
of the valid scenarios for the models also grows. While Alloy
defaults to a scope of 3 for commands, this scope is an upper
bound of the size of each signature individually, and not a
collective scope. As a result, if a user has 8 signatures in
their model, a valid scenario can have up to 24 atoms. In
addition, the scope does not place any restrictions on the size
of relations. Therefore, these 24 atoms can be interconnected
in 100s of ways. All of this increases the burden for a user
to mentally visualize a scenario and then textually specify the
corresponding test case. In fact, it would not be surprising in
this instance, if the user first drew a scenario on paper before
writing the corresponding test case.

To illustrate how Crucible can ease the burden of creating
test cases with numerous signatures and relations, we select the
CV model from the Alloy4Fun benchmark, which has 5 signa-

1. abstract sig Source {}
2. sig User extends Source {
3. profile : set Work,
4. visible : set Work
5. }
6. sig Institution extends Source {}
7.
8. sig Id {}
9. sig Work {
10. ids : some Id,
11. source : one Source
12. }
13.
14. // The works publicly visible in a curriculum
15. // must be part of its profile
16. pred inv1 {
17. User.visible in User.profile
18. }

Fig. 8. Faulty Model of a Curriculum Vitae Policy

tures and 4 relations, as seen in Figure 8. Line 1 introduces an
abstract signature Source. As an abstract signature, Source
cannot directly have atoms itself. The next two signatures
extend the Source signature. Line 2 introduces the signature
User, which contains two relations: profile connects a User
to any number (set) of Work elements (line 3) and visible

connects a User to any number (set) of Work elements as
well (line 4). Line 6 introduces the signature Institution

and line 8 introduces the signature Id, neither of which define
any relations. Lastly, line 9 introduces the signature Work,
which contains two relations: ids connects a Work atom to
at least one (some) Id atom (line 10) and source connects a
Work atom to exactly one (one) Source atom (line 11).

The faulty predicate inv1 (lines 16 - 18) attempts to use
subset (in) to specify that any visible work is someone’s CV
must be part of that person’s profile. The correct version of
the predicate is:

all u:User | u.visible in u.profile

which is similar to the incorrect formula, but constrains
the subset relationship to be true for each individual
person (u.visible), rather than a universal perspective
(User.visible). As a result, for the incorrect formula, a
user could have a visible work in their CV as long as at least
one person has that work in their profile, even if that person
is not them. Consider the following fault revealing test case:

some disj User0, User1: User | Work0, Work1, Work2:
Work | Id0 : Id {{{

User = User0 + User1
profile = User1->Work0 + User1->Work1 + User1->Work2
visible = User0->Work0 + User0->Work1 + User0->Work2

Id = Id0
Work = Work0 + Work1 + Work2
ids = Work0->Id0 + Work1->Id0 + Work2->Id0

source = Work0->User1 + Work1->User1 + Work2->User0
no Institution
}}}

The issue with this test case is that User0 is able to
have Work0 visible on their CV despite not having Work0

in their profile because another user (User1) has the work
in their profile. In fact, for this test case, this is true for
every single work that is visible on User0’s CV. At first
glance, this relationship may be easy to type and confirm

225

textually. However consider the following test case, which is
an extension of the previous test case:

some disj User0, User1, User2: User | Work0, Work1,
Work2: Work | Id0, Id1, Id2: Id
{{{

User = User0 + User1 + User2
profile = User0->Work1 + User0->Work2 + User1->Work0

+ User1->Work1 + User1->Work2 + User2->Work0
+ User2->Work1 + User2->Work2

visible = User0->Work0 + User0->Work1 + User0->Work2
+ User1->Work0 + User1->Work1 + User1->Work2
+ User2->Work0 + User2->Work1 + User2->Work2

Id = Id0 + Id1 + Id2
Work = Work0 + Work1 + Work2
ids = Work0->Id0 + Work0->Id1 + Work0->Id2

+ Work1->Id0 + Work1->Id1 + Work1->Id2
+ Work2->Id0 + Work2->Id1 + Work2->Id2

source = Work0->User2 + Work1->User2 + Work2->User1
no Institution
}}}

This test case is again derived by using Amalgam to create
a maximal scenario based on the first test case [19] to also
highlight one of the largest fault revealing AUnit test case
a user could in theory create based on the scope. Again, the
faulty behavior is revealed by the portion presented in red text.
Figure 9 displays the same test case recreated in Crucible.

As with the LTS model, the main advantage of using
Crucible is reducing the uncertainty of mentally re-creating
such a long text chain for specifying a test case. In this case,
rather than the majority of the complication being one relation,
the complexity comes from the combination of different ways
the atoms can relate to one another within the model. This still
creates a high spatial cognitive burden to attempt to mentally
visualize the test valuation from the text format, which is
likely to result in the user incrementally writing the test and
executing it to spot check that the test is written correctly.
However, in both cases, there is a high spatial cognitive burden
to attempt to mentally visualize the test valuation from the text
format. While the large test case one again looks cluttered, the
same lightweight visual interventions mentioned earlier apply
here as well, while nothing can ease the text inspection burden.

V. FUTURE WORK

In Crucible’s current form, larger test cases can become
quite cluttered, as is the case for Figure 7. Although this
creates some overhead for the user as they are required to
track connections visually, we hold that this overhead is less
than that of the alternative – mentally visualizing a test case
then writing a complex valuation textually. In future work,
we will explore ways to reduce the visual clutter that a large
test case creates by looking into new pathing techniques for
connections and alternative visualization methods for canvases.

In Alloy, a user can customize the Analyzer’s output with
a robust theming subsystem. In Crucible’s current version,
limited support for customization is available, with users
having the ability to assign a custom color to each signature
type. In a future release we aim to further enable the user to
customize the appearance of their test with features such as
the ability to rename atom instances, change the shape of the

Fig. 9. The Curriculum Vitae Model test in Crucible

signatures, and highlight connections on hover. Enabling users
to be more expressive when designing test cases will increase
clarity and allow for the adoption of custom typologies within
a user or organization’s workflow.

In addition, we hope to further improve our support for
high arity (arity-3 and above) connections. This can be ac-
complished by improving the interface used to create arity-3
connections and by hardening our automated guidance tech-
niques to ensure high arity relations have their multiplicities
correctly enforced on the canvas. Optimized support for arity-
3 and above connections will ensure that Crucible is useful
for the majority of Alloy models in use today.

Finally, we plan to explore how to infer the underlying
model structure from a collection of graphical test cases.
This would alleviate the “how do I get started” burden of
writing software models, which a recent user study found that
both novice and expert Alloy users struggle to get started
writing their model [17]. Specifically, based on an initial
set of graphical test cases, we want to automatically create
the signature paragraphs. To illustrate, from the test case in
Figure 1 (b), we can conclude that there are two signatures
(Node and List) and that there are two binary relations
(header to type List×Node and link to type Node×Node).
While a single test case does not let us confirm with absolute
certainty the multiplicity of these relations, the user could
supply additional tests that do. If not, we envision having an
interactive process where we query the user for clarification.

VI. RELATED WORK

Testing and Debugging Techniques for Alloy. Cruicble
aims to ease the adoption of AUnit. There are a number of
testing and debugging techniques which utilize AUnit tests:
µAlloy is a mutation testing framework [25], AlloyFL is a
hybrid fault localization technique that uses spectrum-based
and mutation-based fault localization strategies to create a
ranked list of suspicious locations [30], and ARepair is a
generate-and-valid automated repair technique that uses AUnit
test cases as an oracle to evaluate potential patches [28].
ICEBAR extends ARepair to consider built in Alloy assertions
in addition to test cases to guide the repair [12].

There are also a number of repair techniques that use built
in assertions in place of AUnit tests. ATR is an Alloy repair
technique that tries to find patches based on a preset number
of templates and uses Alloy assertions as an oracle [36].
BeAFix is an automated repair technique that uses a bounded

226

exhaustive search [4]. TAR is a mutation-oriented repair
technique that is aimed at repairing Alloy4Fun models, which
are educational exercises [5]. FLACK is a fault localization
technique that locates faults by using a partial max sat toolset
to compare the difference between a satisfying instance of
a predicate and a counterexample from an assertion over
that predicate [37]. Alloy assertions can be used to check
the accuracy of predicates, but assertions need to be written
correctly themselves to be beneficial.

Drawing System Workflows. Our approach shares the spirit
of storyboard programming, which uses user-provided graph-
ical representations of data structures to synthesize code to
perform data structure manipulations, based on the insight that
it can be easier and more intuitive for a user to draw concrete
data structure manipulations than to write the code [23].
Besides storyboard programming, there are other efforts re-
lated to drawing data structures and their transformations [8].
Crucible makes use of a similar insight: that it can be easier
to draw examples of system behavior rather than to formally
write the constraints. While not mathematical software models,
there are several efforts to allow users to draw different
UML diagrams [33], [6], [15]. These efforts, in particular
FlexiSketch [33], allow users to free hand draw portions of
UML diagrams. The lessons learned from the efforts helped
informed our choice of where to draw the line between free-
hand drawings and a more structure drag-and-drop interface.

VII. CONCLUSION

AUnit test cases give users a simple and systematic way to
spot check their Alloy models for correctness. In addition, a
unit testing framework helps the model development process
feel closer to that of writing imperative programs for novice
software modelers. However, the need to specify AUnit test
cases textually is a barrier to adoption for AUnit and its
supported testing infrastructures, like fault localization and
automated repair. By enabling users to build AUnit test cases
graphically, we bring the creation of test cases more in line
with how users interact with the output of Alloy models, which
is largely a graphical process. Crucible takes this process a
step further by helping guide users to create well-formed test
cases based on the existing underlying model.

REFERENCES

[1] Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards
a formal foundation of web security. In: 2010 23rd IEEE Computer
Security Foundations Symposium. pp. 290–304 (2010)

[2] Alloy4Fun Benchmark: https://zenodo.org/record/4676413 (2022)
[3] Bagheri, H., Kang, E., Malek, S., Jackson, D.: A formal approach for

detection of security flaws in the Android permission system. Formal
Asp. Comput. (2018)

[4] Brida, S.G., Regis, G., Zheng, G., Bagheri, H., Nguyen, T., Aguirre, N.,
Frias, M.F.: Bounded exhaustive search of alloy specification repairs. In:
ICSE (2021)

[5] Cerqueira, J., Cunha, A., Macedo, N.: Timely specification repair for
alloy 6. In: Software Engineering and Formal Methods. pp. 288–303
(2022)

[6] Chen, Q., Grundy, J., Hosking, J.: An e-whiteboard application to sup-
port early design-stage sketching of uml diagrams. In: IEEE Symposium
on Human Centric Computing Languages and Environments, 2003.
Proceedings. 2003. pp. 219–226. IEEE (2003)

[7] Chong, N., Sorensen, T., Wickerson, J.: The semantics of transactions
and weak memory in x86, Power, ARM, and C++. SIGPLAN Not. 53(4),
211–225 (2018)

[8] Ding, C., Mateti, P.: A framework for the automated drawing of data
structure diagrams. IEEE Transactions on Software Engineering 16(5),
543–557 (1990)

[9] Eid, E., Day, N.A.: Static profiling alloy models. IEEE Transactions on
Software Engineering pp. 1–1 (2022)

[10] Galeotti, J.P., Rosner, N., Pombo, C.G.L., Frias, M.F.: TACO: Efficient
SAT-based bounded verification using symmetry breaking and tight
bounds. TSE (2013)

[11] Gopinath, D., Malik, M.Z., Khurshid, S.: Specification-based program
repair using SAT. In: TACAS. pp. 173–188 (2011)

[12] Gutiérrez Brida, S., Regis, G., Zheng, G., Bagheri, H., Nguyen, T.,
Aguirre, N., Frias, M.: ICEBAR: Feedback-Driven Iterative Repair of
Alloy Specifications (2023)

[13] Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The
MIT Press (2006)

[14] Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. In: ISSTA
(Aug 2000)

[15] Lank, E., Thorley, J., Chen, S., Blostein, D.: On-line recognition of
uml diagrams. In: Proceedings of Sixth International Conference on
Document Analysis and Recognition. pp. 356–360. IEEE (2001)

[16] Macedo, N., Cunha, A., Pereira, J., Carvalho, R., Silva, R., Paiva,
A.C.R., Ramalho, M.S., Silva, D.: Experiences on teaching alloy with
an automated assessment platform. In: Raschke, A., Méry, D., Houdek,
F. (eds.) Rigorous State-Based Methods. pp. 61–77 (2020)

[17] Mansoor, N., Bagheri, H., Kang, E., Sharif., B.: An empirical study
assessing software modeling in alloy. In: FormaliSE. p. To Appear
(2023)

[18] Marinov, D., Khurshid, S.: TestEra: A novel framework for automated
testing of Java programs. In: ASE (2001)

[19] Nelson, T., Danas, N., Dougherty, D.J., Krishnamurthi, S.: The power of
"why" and "why not": Enriching scenario exploration with provenance.
In: FSE (2017)

[20] Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.:
The Margrave tool for firewall analysis. In: LISA. pp. 1–8 (2010)

[21] OpenJFX: JavaFX - documentation (2023), https://openjfx.io/
[22] Saks, E.: JavaScript Frameworks: Angular vs React vs Vue. Master’s

thesis, University of Texas at Austin (2019)
[23] Singh, R., Solar-Lezama, A.: Synthesizing data structure manipulations

from storyboards. In: FSE. pp. 289–299 (2011)
[24] Sullivan, A., Wang, K., Khurshid, S.: AUnit: A Test Automation Tool

for Alloy. In: ICST DEMO Track. pp. 398–403 (2018)
[25] Sullivan, A., Wang, K., Zaeem, R.N., Khurshid, S.: Automated test

generation and mutation testing for Alloy. In: ICST (2017)
[26] Sullivan, A., Zaeem, R.N., Khurshid, S., Marinov, D.: Towards a test

automation framework for Alloy. In: SPIN. pp. 113–116 (2014)
[27] Trippel, C., Lustig, D., Martonosi, M.: Security verification via auto-

matic hardware-aware exploit synthesis: The CheckMate approach. IEEE
Micro (2019)

[28] Wang, K., Sullivan, A., Khurshid, S.: Automated model repair for Alloy.
In: ASE (2018)

[29] Wang, K., Sullivan, A., Khurshid, S.: MuAlloy: A Mutation Testing
Framework for Alloy. In: ICSE Demo Track. pp. 29–32 (2018)

[30] Wang, K., Sullivan, A., Khurshid, S.: Fault localization for declarative
models in Alloy. In: ISSRE (2020)

[31] Wang, K., Sullivan, A., Marinov, D., Khurshid, S.: ASketch: a sketching
framework for Alloy. In: ABZ. pp. 121–136 (2018)

[32] Wickerson, J., Batty, M., Sorensen, T., Constantinides, G.A.: Automat-
ically comparing memory consistency models. In: POPL (2017)

[33] Wüest, D., Seyff, N., Glinz, M.: Flexisketch: A mobile sketching tool for
software modeling. In: International conference on mobile computing,
applications, and services. pp. 225–244. Springer (2012)

[34] Zaeem, R.N., Khurshid, S.: Contract-based data structure repair using
Alloy. In: ECOOP. pp. 577–598 (2010)

[35] Zave, P.: How to make Chord correct (using a stable base). CoRR
abs/1502.06461 (2015)

[36] Zheng, G., Nguyen, T., Brida, S.G., Regis, G., Aguirre, N., Frias, M.F.,
Bagheri, H.: Atr: Template-based repair for alloy specifications. In:
ISSTA. p. 666–677 (2022)

[37] Zheng, G., Nguyen, T., Gutiérrez Brida, S., Regis, G., Frias, M.F.,
Aguirre, N., Bagheri, H.: Flack: Counterexample-guided fault localiza-
tion for alloy models. In: ICSE. pp. 637–648 (2021)

227

https://zenodo.org/record/4676413
https://openjfx.io/

