
MuAlloy: A Mutation Testing Framework for Alloy

Kaiyuan Wang, Allison Sullivan, Sarfraz Khurshid
University of Texas at Austin, USA

{kaiyuanw,allisonksullivan,khurshid}@utexas.edu

Abstract

Creating models of software systems and analyzing the models

helps develop more reliable systems. A well-known software mod-

eling tool-set is embodied by the declarative language Alloy and

its automatic SAT-based analyzer. Recent work introduced a novel

approach to testing Alloy models to validate their correctness in

the spirit of traditional software testing: AUnit de�ned the foun-

dations of testing (unit tests, test execution, and model coverage)

for Alloy, and MuAlloy de�ned mutation testing (mutation opera-

tors, mutant generation, and equivalent mutant checking) for Al-

loy. This tool paper describes our Java implementation of MuAlloy,

which is a command-line tool that we released as an open-source

project on GitHub. Our experimental results show that MuAlloy is

e�cient and practical. The demo video for MuAlloy can be found

at https://youtu.be/3lvnQKiLcLE.

1 Introduction

Software models, which describe key properties of software sys-

tems at an abstract level, help buildmore reliable systems. Research-

ers developed various languages and tools for creating models [3,

5, 14]. A well-known software modeling tool-set is embodied by

the declarative language Alloy and its automatic SAT-based ana-

lyzer [3, 12] that performs scope-bounded analysis with respect to

a given bound on the universe of discourse.

The Alloy analyzer plays a key role in helping the users to val-

idate their models so that they accurately re�ect the intended prop-

erties. Traditionally, Alloy users employ three validation techniques:

(1) solving for desired parts of the model to create instances that

satisfy the properties modeled, e.g., acyclic structure of a network;

(2) creating alternative but related (e.g., equivalent) formulations

of the properties modeled, and checking whether the expected re-

lation (e.g., equivalence) holds; and (3) using unsatis�able cores to

highlight parts of the model that cause unsatis�ability. The Alloy

analyzer provides robust support for each of the three techniques.

More recent work introduced a novel approach to testing Alloy

models in the spirit of traditional software testing so that users

who are familiar with writing tests for their imperative code can

follow a similar method for testing their declarativemodels. Specif-

ically, the AUnit [8, 11] framework introduced the foundations of

testing – including unit tests, test execution, and model coverage

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183488

sig List { header: lone Node }

sig Node { link: lone Node }

pred Acyclic (l: List) {

no l.header or some n: l.header.*link | no n.link }

run Acyclic

Figure 1: Acyclic Singly-linked List.

– for Alloy. Follow up work on MuAlloy [10, 13] introduced muta-

tion testing [2] – including mutation operators, mutant generation,

equivalent mutant checking, mutation score – for Alloy.

This tool paper describes our Java implementation of MuAlloy,

which is a command-line tool that we released as an open-source

project on GitHub (https://github.com/kaiyuanw/MuAlloy). MuAl-

loy supports 9 mutation operators, which are inspired by previous

work on mutation testing for imperative languages [4]. MuAlloy

applies mutation operators at the AST level and generates a list

of mutants. For each mutant, MuAlloy automatically checks if

the mutant is equivalent (up to the given scope) to the original

model using SAT solving. For each non-equivalent mutant found,

this check creates an input that kills the mutant; MuAlloy saves

both the mutant and the input (as an AUnit test) to disk, which

provides mutation-based test generation. For traditional mutation

testing, given an Alloy model and its test suite, MuAlloy creates

non-equivalent mutants for the model and computes the mutation

score for the given suite with respect to the non-equivalent mu-

tants.We evaluatedMuAlloy using 13 Alloy models that were used

in previous work [6, 9, 10]. The results shows that MuAlloy is ef-

�cient and practical (it takes <10 seconds for mutant generation

and <40 seconds for mutation testing for each subject model).

2 AUnit Background

Before describing the MuAlloy technique, we �rst describe AUnit

tests. To illustrate, Figure 1 shows an acyclic singly-linked list Al-

loymodel. Themodel declares a set of "List" and "Node" atoms. Each

"List" atom has zero or one "header" of type "Node". Each "Node"

atom has zero or one following "Node" atoms named "link". Both

"header" and "link" are partial functions. The predicate "Acyclic"

restricts its parameter "l" to be an acyclic list. The body of "Acyclic"

states that "l" is acyclic if (1) it does not have a "header" or (2) there

exists some "Node" reachable from "l"’s "header" following zero or

more traversals of "link", such that the "Node"’s "link" does not re-

late to any "Node".

If we run the "Acyclic" predicate, we can get an satis�able in-

stance shown in Figure 2. The instance states that there are two

"List" atoms ("List0" and "List1") and two "Node" atoms ("Node0"

and "Node1"). "List0"’s "header" is "Node1" and "List1"’s "header" is

"Node0". "Node1"’s next node is "Node0". Note that "List0" is explic-

itly passed as the argument of "Acyclic" predicate, and we can see

that "List0" is indeed acyclic as there is no loop in the list.

https://youtu.be/3lvnQKiLcLE
https://doi.org/10.1145/3183440.3183488
https://github.com/kaiyuanw/MuAlloy

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Kaiyuan Wang, Allison Sullivan, Sarfraz Khurshid

List0

List1

Node0

Node1

header

headerlink

Figure 2: Satis�able List Instance.

pred test {

some disj List0, List1: List {

some disj Node0, Node1: Node {

List = List0 + List1

header = List0->Node1 + List1->Node0

Node = Node0 + Node1

link = Node1->Node0

Acyclic[List0] } } }

run test

Figure 3: List Test.

An AUnit test is a pair consisting of a model valuation and a

run command. For example, the Alloy instance in Figure 2 can be

written as an AUnit test as shown in Figure 3. The test declares

2 disjoint "List" atoms ("List0" and "List1") and 2 disjoint "Node"

atoms ("Node0" and "Node1"). It restricts the entire "List" set to be

{"List0", "List1"} and "Node" set to be {"Node0", "Node1"}. The predi-

cate also states that the "header"maps "List0" to "Node1" and "List1"

to "Node0", and the "link"maps "Node1" to "Node0". If you run the test

predicate, you will obtain an isomorphic Alloy instance to the one

shown in Figure 2.

3 Technique

A typical mutation testing technique has two phases:

• Mutation (M) Phase: Automatically inject faults into a program.

• Testing (T) Phase: Automatically run a given test suite against

each mutated program. If some test fails, the mutant is killed.

The quality of the test suite can be gauged from the mutation

score, which is the percentage of mutations killed. In this paper,

the program is an Alloy model and the test suite follows the AUnit

test convention.

In this section, we describe the mutation operators supported

in MuAlloy. Then, we describe each phase. Finally, we describe an

AST manipulation library built for MuAlloy.

Table 1: Mutation Operators

Mutation
Description

Operator

MOR Multiplicity Operator Replacement

QOR Quanti�er Operator Replacement

UOR Unary Operator Replacement

BOR Binary Operator Replacement

LOR Formula List Operator Replacement

UOI Unary Operator Insertion

UOD Unary Operator Deletion

BOE Binary Operand Exchange

IEOE Imply-Else Operand Exchange

Algorithm 1: Mutant Generation

Input: Alloy model M, mutation operators Ops

Output: A list of non-equivalent mutants

Procedure visit(node, Ops, L)
ops = �ndApplicable(node, Ops)

foreach op ∈ ops do
mutant = mutate(node, op)

if compile(mutant) then

if !areEquivalent(M, mutant) then
L.add(mutant)

foreach child ∈ node.getChildren() do
visit(child, Ops, L)

L← []; root = parse(M)

visit(root, Ops, L)

return L

A Mutation Operators

Table 1 shows the mutation operators supported in MuAlloy.MOR

mutates signature multiplicity, e.g. "lone sig" to "one sig". QORmu-

tates quanti�ers, e.g. "all" to "some", etc. UOR, BOR and LOR de�ne

operator replacement for unary, binary and formula list operators,

respectively. For example, UOR mutates "a.∗b" to "a.ˆb"; BOR mu-

tates "a=>b" to "a<=>b"; and LORmutates "a&&b" to "a||b". UOI inserts

an unary operator before an expression, e.g. "a.b" to "a.∼b". UOD

deletes an unary operator from an expression, e.g. "a.∗∼b" to "a.∗b".

BOE exchanges operands for a binary operator, e.g. "a=>b" to "b=>a".

IEOE exchanges the operands of "imply-else" expression, e.g. "a

=> b else c" to "a => c else b". All mutation operators are de�ned

at the AST level and modifying AST nodes properly is non-trivial.

For example, "&&" and "||" are list operators in Alloy. Replacing "&&"

with "||" in "a||(b&&(c||d))" should results in "a||b||c||d", which

means we need to properly �atten the parent and child AST nodes

after mutation.

B Mutation (M) Phase

MuAlloy applies mutation operators to Alloy AST nodes. Algo-

rithm 1 describes how MuAlloy generates mutants from a given

model. The algorithm takes as input an Alloy modelM and the set

of prede�ned mutation operators in Table 1. The output is a list of

non-equivalent mutant models L. MuAlloy �rst initializes the re-

sult list L as empty. Then, MuAlloy parses the target Alloy model

as an AST and returns the root node. MuAlloy implements a visi-

tor pattern to visit each AST node recursively using a depth �rst

search. For each visited node, MuAlloy �nds all the applicable mu-

tation operators and applies each operator to the node one at a time.

Themutatemethod modi�es the AST node and returns a clone ver-

sion of the mutated model (mutant). The mutant is added to the

result list L only if it compiles and is not equivalent to the original

model M. The areEquivalent method checks if the mutated model

is equivalent to the original model or not using Alloy’s built-in

"check" command. For each mutation, MuAlloy only checks equiv-

alence of the a�ected construct declared inM, which avoids redun-

dant checks and saves time. For example, if MuAlloy mutates "sig

List { header: lone Node }" to "sig List { header: one Node }", then

MuAlloy: A Mutation Testing Framework for Alloy ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Algorithm 2: Mutation Testing

Input: Alloy modelM, generated mutants U, test suite T

Output: The mutation score for test suite T

killed = 0; resM = []

foreach test ∈ T do resM.add(run(test, M))

foreach mutant ∈ U do

foreach i ∈ 1..T.size() do

if resM[i] != run(T[i], mutant) then
killed++

break

return killed / U.size()

the only a�ected Alloy construct is the "List" signature declara-

tion. MuAlloy canonicalizes the signature declaration as "sig List

{ header: set Node }" and automatically generates an equivalence

checking command as "check { all l: List | lone l.header <=> one

l.header }". Then, MuAlloy invokes the Alloy Analyzer to run the

above "check" command. If no counterexample is found, themutant

is equivalent to the original model and MuAlloy will not add the

mutant to L. If a counterexample is found, thenMuAlloy optionally

encodes the counterexample into an AUnit test which kills the mu-

tant. In the end of the this phase, MuAlloy generates a test suite

that kills all mutants and returns all non-equivalent mutants (L).

C Testing (T) Phase

MuAlloy can compute the mutation score for a given AUnit test

suite. Algorithm 2 describes how MuAlloy runs mutation testing.

The algorithm takes as input an Alloy model M, a set of mutant

models U and a given test suite T. The output is the mutation score

for the test suite T. MuAlloy initiates the number of killed mutants

(killed) to 0. Then, MuAlloy runs each AUnit test in T under M

and collects test results for the entire test suite as resM. The run

method invokes an AUnit test under a given model and returns a

boolean result indicating whether the test is satis�able or not. For

each mutant model, MuAlloy runs each test and checks if the test

result varies from that of the original model M. If the test result

is di�erent, the mutant model is marked as killed by increasing

killed variable and the algorithm checks the next mutant. If all test

results for the mutant model are the same as those of the original

model, then the test suite T does not kill the mutant. Finally, the

algorithm returns the mutation score indicating the percentage of

mutants killed along with the total number of mutants.

In practice, a user can provide an AUnit test with the "expect"

keyword, which indicates the expected satis�ability of the test.With

the expected satis�ability of all tests, M is not needed in Algo-

rithm 2. However, since the expected test output should be exam-

ined manually, we decide to not generate AUnit tests in the muta-

tion phase with "expect" keywords. We made this decision because

a given Alloy model may be faulty and assuming the ground truth

based on a potentially faulty model does not make sense.

D AST Traversal Library

To make MuAlloy robust and easy to extend, we implemented a

stand-alone Alloy parser library, i.e. AlloyParser. AlloyParser fol-

lows a similar design methodology to the JavaParser [1] and in-

cludes a set of visitors to help users traverse and make updates

to any Alloy AST. Although the Alloy tool-set comes with visitor

classes like "VisitQuery" and "VisitReturn", they only support vis-

iting an Alloy expression. Our visitors are much more powerful as

they allow users to visit arbitrary nodes in the AST. AlloyParser

also extends existing Alloy AST nodes with richer types. The stan-

dard Alloy comes with a very compact AST node representation

and does not distinguish expressions from formulas in the imple-

mentation. This distinction may be useful in some cases. For ex-

ample, a user may want to de�ne di�erent mutation operators for

expressions and formulas, and with richer AST nodes, e.g. if for-

mulas and expressions are represented by di�erent types of AST

nodes, the user does not need to repeat the logic that checks if an

AST node represents a formula or an expression. This check may

be duplicated many times because many AST nodes in the orig-

inal Alloy tool-set represent both expressions and formulas, e.g.

"ExprUnary", "ExprBinary" and "ExprQt", etc. AlloyParser also comes

with a "PrettyStringVisitor" class and a "CloneVisitor" class. The

"PrettyStringVisitor" class converts an Alloy AST node and its

subnodes to code fragments. The "CloneVisitor" class creates a

deep copy of an Alloy AST node and its subnodes. MuAlloy’s mu-

tation phase is mainly built on top of the AlloyParser by extending

and using the AlloyParser’s visitors.

4 Usage

In this section, we describe how users can run MuAlloy. MuAlloy

is a command line tool that comes with the following features:

• Generate non-equivalent mutants andmutant killing AUnit tests.

• Run mutation testing for a given test suite.

In this section, we discuss how to use these features. More de-

tails can be found on the MuAlloy GitHub homepage.

A Generate Mutants and Tests

To generate non-equivalent mutants and mutant killing tests, run

"./mualloy.sh --generate-mutants -o <arg> -m <arg> [-s <arg>]

[-t <arg>]" or "./mualloy.sh --generate-mutants --model-path

<arg> --mutant-dir <arg> [--scope <arg>] [--test-path <arg>]".

The options are explained below:

• "-o,--model-path": This argument is required. Pass the model

you want to mutate as the argument.

• "-m,--mutant-dir": This argument is required. Pass the directory

to which you want to save mutants as the argument. If the di-

rectory does not exist, a new directory will be created.

• "-s,--scope": This argument is optional. Pass the Alloy scope

for equivalence checking. For each non-equivalent mutant, the

scope will also be used to generate a run command for the cor-

responding AUnit test that kills the mutant. If the argument is

not speci�ed, a default value of 3 is used.

• "-t,--test-path": This argument is optional. Pass the path to

which you want to save mutant killing test suite as the argu-

ment. If the argument is not speci�ed, no mutant killing test

suite will be generated. Note that the generated test suite only

contains unique test predicates and the run commands.

For each model, the command reports the number of equivalent

mutants, non-equivalent mutants and unique AUnit tests gener-

ated by MuAlloy.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Kaiyuan Wang, Allison Sullivan, Sarfraz Khurshid

B Run Mutation Testing

For mutation testing, run "./mualloy.sh --run-mutation-testing

-o <arg> -m <arg> -t <arg>" or "./mualloy.sh

--run-mutation-testing --model-path <arg> --mutant-dir <arg>

--test-path <arg>". The options are explained below:

• "-o,--model-path": This argument is required. Pass the original

model as the argument. MuAlloy collects the test satis�ability

result for the original model and then compares it with the test

result for a mutant model. If the results are di�erent, then the

mutant is killed.

• "-m,--mutant-dir": This argument is required. Pass the directory

to which mutants are saved as the argument. MuAlloy collects

test results for each of the mutant models and checks if it can

be killed by the test suite or not.

• "-t,--test-path": This argument is required. Pass the test suite

you want to run as the argument. MuAlloy runs the test suite

against the original model and mutant models to compute the

mutation score for the test suite. Note that the test suite should

only contain the test predicates and the run commands.

The command reports whether each individual mutant is killed

by the test suite or not. After MuAlloy �nishes running the test

suite against all mutants, the command reports the mutation score.

5 Evaluation

This section describes the experiment setup and results for MuAl-

loy. We ran MuAlloy on a MacBook Pro with a 2.5 GHz Intel Core

i7-4870HQ. Table 2 shows the 13 Alloy models involved in the ex-

periment and the resultswhen runningMuAlloy.Model shows the

model names. Address book (addr) and Grandpa (grand) are from

Alloy’s example set. Grade book (grade), bad employee (bempl)

and other groups (other) are Alloy translations of access-control

speci�cations [7]. btreemodels binary trees. ctreemodels two col-

ored undirected trees. dijkstra models how mutexes are grabbed

and released by processes, and how Dijkstra’s mutex ordering cri-

terion can prevent deadlocks. farmermodels the farmer-crossing-

river problem. fullTree models full binary trees. hshake models

the Halmos handshake problem. nqueens models the N queens

problem. list models acyclic singly-linked lists. #ast shows the

number of AST nodes in each model. scp shows the scope used

to check equivalence and generate tests. #eq and #neq show the

number of equivalent and non-equivalent mutants for each model,

respectively. #test shows the number of unique tests created by

Table 2: MuAlloy Subject Stats. Times are in seconds.

Model #ast scp #eq #neq #test Tдen Ttest
addr 114 4 4 58 43 1.9 4.3

bempl 46 3 1 30 25 1.0 2.2
btree 58 3 11 67 24 1.7 2.2
ctree 71 3 19 78 22 2.3 3.3

dijkstra 385 3 13 145 83 8.2 39.0
farmer 169 4 10 93 48 4.5 10.1
fullTree 81 3 17 83 28 2.9 3.6
grade 64 3 2 34 28 1.3 3.3
grand 96 4 13 87 40 3.0 8.7

hshake 127 5 43 92 30 3.8 6.7
nqueens 104 4 10 54 33 2.9 8.2

other 64 3 3 34 20 1.3 2.4
list 35 3 5 28 17 1.2 1.8

MuAlloy. Tдen shows the mutant generation time. Ttest shows

the mutation testing time.

The most complex subject is dijkstra (385 nodes) and the sim-

plest subject is list (35 nodes). The number of equivalent mutants

is relatively small compared to the number of non-equivalent mu-

tants. The number of unique tests is strictly smaller than the the

number of non-equivalent mutants because MuAlloy removes du-

plicate AUnit test cases that kill multiple mutants. The time to gen-

erate mutants ranges from 1.0 to 8.2 seconds while the time to run

mutation testing for all mutants given a model ranges from 1.8

to 39.0 seconds. In general, MuAlloy generates more mutants and

tests for more complex models and takes a longer time to generate

mutants and run mutation testing in these cases. Overall, these re-

sults show that both mutant generation and mutation testing are

fast and practical using MuAlloy.

6 Conclusion

This paper introduced the MuAlloy tool for mutation testing of Al-

loy models. MuAlloy provides command line options to automat-

ically generate non-equivalent mutants as well as tests that kill

non-equivalent mutants. Given an Alloy model and its test suite,

MuAlloy reports the mutation score for the test suite against non-

equivalent mutants. MuAlloy additionally provides an Alloy AST

manipulation library. Our evaluation shows that MuAlloy is e�-

cient and practical. Moreover, MuAlloy provides a sound basis for

developing new techniques and tools that leverage mutation test-

ing, e.g., for fault localization.

Acknowledgments

We would like to thank the anonymous reviewers and Hayes Con-

verse for the valuable comments and helpful suggestions. Thework

is partially supported by the US National Science Foundation un-

der Grant No. NSF CCF-1718903.

References
[1] 2017. JavaParser. (2017). http://javaparser.org
[2] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:

Help for the Practicing Programmer. Computer (1978).
[3] Daniel Jackson. 2002. Alloy: A Lightweight Object Modelling Notation. ACM

TOSEM (2002).
[4] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of

Mutation Testing. IEEE TSE (2011).
[5] Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CDDi�: Semantic

Di�erencing for Class Diagrams. In ECOOP.
[6] Tim Nelson, Natasha Danas, Daniel J. Dougherty, and Shriram Krishnamurthi.

2017. The Power of "Why" and "Why Not": Enriching Scenario Exploration with
Provenance. In ESEC/FSE.

[7] Salman Sagha�, Ryan Danas, and Daniel J. Dougherty. 2015. Exploring Theories
with a Model-Finding Assistant. In CADE.

[8] Allison Sullivan. 2014. AUnit - A Testing Framework for Alloy. Master’s thesis.
University of Texas at Austin.

[9] Allison Sullivan, Kaiyuan Wang, Sarfraz Khurshid, and Darko Marinov. 2017.
Evaluating State Modeling Techniques in Alloy. In SQAMIA.

[10] Allison Sullivan, KaiyuanWang, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid.
2017. Automated Test Generation and Mutation Testing for Alloy. In ICST.

[11] Allison Sullivan, Razieh Nokhbeh Zaeem, Sarfraz Khurshid, and DarkoMarinov.
2014. Towards a Test Automation Framework for Alloy. In SPIN.

[12] Emina Torlak and Daniel Jackson. 2007. Kodkod: A Relational Model Finder. In
TACAS.

[13] Kaiyuan Wang. 2015. muAlloy – An Automated Mutation System for Alloy. Mas-
ter’s thesis. University of Texas at Austin.

[14] Jos Warmer and Anneke Kleppe. 2003. The Object Constraint Language: Getting
Your Models Ready for MDA.

http://javaparser.org

	Abstract
	1 Introduction
	2 AUnit Background
	3 Technique
	A Mutation Operators
	B Mutation (M) Phase
	C Testing (T) Phase
	D AST Traversal Library

	4 Usage
	A Generate Mutants and Tests
	B Run Mutation Testing

	5 Evaluation
	6 Conclusion
	Acknowledgments
	References

