Allison K. Sullivan — Research Statement

Our society has become increasingly reliant on software systems; however, we are constantly reminded
of how hard it is to produce correct software. Just in the last two years British Airways check-in system
crashed canceling hundreds of flights, Israel’s lunar lander collided into the surface of the moon, and Uber’s
self-driving car killed a pedestrian. My research directly targets this problem. I develop automated tech-
niques to synthesize and test models of software systems and to provide faster analysis of those models, thus
improving software reliability.

Declarative modeling languages improve the quality of software by catching design flaws early in de-
velopment and verifying imperative implementations. However, the broader community has been slow to
adopt these languages as they often have steep learning curves and lack robust development toolsets. A
key insight behind my research is that proven imperative verification practices can be mapped to declarative
languages, giving users a concrete path to reason over the correctness of their model and facilitating their
accessibility to a larger, more diverse community of users. However, just finding bugs is not sufficient. I
aim to help developers understand and address errors in their models and to design frameworks that help
prevent errors. I strive to develop and evaluate my techniques on real systems of indicative size. To enable
technology transfer and reproducible work, I release my tools and benchmarks to the community at large.

My research is well-received by the broader software engineering community. My work is currently
funded by the National Science Foundation (No. CCF-1918189). Additionally, I have published at top con-
ferences, including: The International Conference on Software Engineering, The International Conference
on Automated Software Engineering, and The Symposium on the Foundations of Software Engineering.

Bringing Imperative Testing Frameworks to the Declarative World.

Software models can only help improve system reliability if they are correct. I design algorithms and
tools that bring imperative testing practices into the workflow for declarative languages. My work largely
focuses on Alloy, a first-order modeling language based on relational algebra. A strength of Alloy is its
SAT-based automated analysis toolset the Analyzer which allows for scenario exploration.

Testing Declarative Languages. Prior to our work, Alloy had no formal notion of “testing.” Experienced
users would employ a range of ad-hoc, time consuming and error prone techniques, such as enumerating all
scenarios and visually inspecting them for issues. Our key insight is that unit testing, the most effective way
to validate code, provides a blueprint on how to validate models. Alloy executes in a declarative environment
in which there is no notion of where the “execution” starts, what conditional branches it encounters, and how
the values of the final return values are computed. AUnit navigates this situation to define: (1) what is a test
case, (2) what test execution and outcomes are and (3) what are coverage criteria [Spin’14, ICST’18]. Thus,
AUnit provides systematic method to verify the correctness of their models.

Debugging Declarative Languages. AUnit has served as a foundation for integrating well-established im-
perative testing techniques into Alloy. To build confidence in test suites, pAlloy introduces mutation testing
with first-order AST-level mutant operators. In order to help reveal faulty models, we created two differ-
ent approaches for automated test generation that have been shown to reveal faults in real-world models:
AGencoy, a coverage-directed approach and AGen,, a mutation-directed approach [ICST’17, ICSE’18].
Our most recent work switches from revealing the bug to locating it. While Alloy offers succinct formu-
lation of complex properties, this is a draw back for localization. Our insight here is that commonly used
spectrum-based localization techniques are based on an imperative notion of control flow, which does not
translate to Alloy’s execution environment. Therefore, our framework, Alloyy;, combines spectrum-based
with mutation-based fault localization. Experimental results show Alloy; can find faults spanning multiple
locations, and outperforms Alloy’s current localization method, the minimum unsat core.

Moving Towards Correct From Construction Systems.

Even with verification techniques in place, writing correct Alloy models is difficult. I design algorithms
and tools to synthesize portions of Alloy models. Through synthesis techniques, we establish correct from
construction models, which, in turn, can be the basis to create correct from construction systems.
Synthesizing Declarative Languages. Sketching is a form of program synthesis designed to reduce the
input burden on the user: the user supplies the high level details by providing a program with holes and a



specification, and the machine creates the low level details by filling in the holes to match the specification.
Our key insight is that AUnit tests are a specification. ASketch takes as input a partial model with holes,
a generator that provides potential candidate fragments for each hole, and an AUnit test suite to outline the
desired behavior. As output, ASketch produces a completed model that passes all tests either by using con-
straint solving or constraint checking and enumeration [ABZ’18, FSE’18]. We pair our synthesis work with
RexGen, a systematic approach to generate semantically non-equivalent relational algebra expressions,
which allows our synthesis framework to be fully automated [ABZ’18]. Using ASketch, we can actually
guide the user through the creation of a correct model by searching for the first two logically non-equivalent
solutions, generating a counterexample for the user to turn into a test, and resuming the search.

Repairing Declarative Languages. Even though most of Alloy’s grammar is finite, sketching suffers from
scalability issues due the exponential complexity of sketching multiple expressions, which are not bound
to a finite set by the grammar. However, sketching opens the door for automated repair, in which a faulty
model is transformed into a corrected model, where “correct” means the model now passes all tests. Our
repair framework, A Repair, identifies a faulty location using Alloy 11, abstracts the formulas related to the
location into a sketch, and then uses either an all-combinations or a base-choice methodology to explore
candidate solutions. A Repair’s base-choice strategy is both efficient and still robust enough to successfully
repair real-world faulty Alloy models [ASE’18, ICSE’19].

Ongoing and Future Work.

Improving Scenario Enumeration. When a command successfully executes, the Analyzer will present the
user with the scenarios enabled by their model. However, this collection often ranges in the hundreds of
thousands and is not presented to the user in any kind of order. Our recent work has focused on giving users
more control over which scenarios are generated and how they are presented. Our key insight is to support
abstract functions, which give the user a formal mechanism to specify how the scenarios must differ thus
producing a smaller, higher quality set of scenarios [ICFEM’19].

Supporting Incremental Development. Model development is inherently incremental, where constraints
are added or changed over time due to correcting faulty constraints or updating constraints as the system
evolves. In the Analyzer, incremental development is ignored. When a command is re-executed, the entire
model is re-translated into the same SAT problem and re-solved even if nothing has changed. Alloy, which
relies on computationally intensive SAT solvers, can benefit substantially from support for incremental
analysis. A novelty of this work is that we are exploring how to use our past work efficiently exploring
scenarios with constraint checking to reduce the dependence on SAT solvers and make incremental analysis
less computationally intensive.

Testing Unmanned Aerial Vehicles (UAVs). In collaboration with research scientists at the Naval Research
Laboratory (NRL), we are working to update SCR, NRL’s state-based modeling language, to perform cyber-
physical verification of unmanned aerial vehicles. With the shifting focus to autonomous vehicles and their
interactions with hardware and the environment, SCR needs richer language constructs to model continuous
behavior, such as support for periodically monitored variable. Currently, we are building our approach
based on models of Bitcraze’s Crazyflie 2.1 behavior, with experiments being run from NRL. In additional
to verifying a single UAV, our longer term goal is to verify the interaction between multiple UAVs.

Long Term Goals. In a society where software is becoming more important but not any less buggy, I
ambition to build and expand verification and synthesis environments for declarative languages with the hope
of encouraging the adoption of these languages to more software systems. I plan to continue to work closely
with scientists in both academia and industry by strengthening my current collaborations with researchers
from the University of Texas at Austin, the University of Illinois Urbana-Champagne, The University of
Nebraska-Lincoln, NRL and Google. In particular, I am actively building my relationship with NRL and
have established a link for students to intern at NRL during the summer. NRL offers exposure to industry
scale evaluations of research efforts, as it is often asked to apply their work to active development projects.
By maintaining and expanding these relationships, I will continue to focus my research on the problems that
arise in real world systems, to evaluate the results of my research from a broader viewpoint, and to help
apply my research in an industry setting.



